What Structure Must G Have for All Aut(G) Elements to Send N to N

  • Thread starter Thread starter eastside00_99
  • Start date Start date
  • Tags Tags
    Finite Groups
eastside00_99
Messages
232
Reaction score
0
Here is another problem from Lang.

Let G be a finite group. N a normal subgroup. We want to ask what structure must G have in order for all the elements of Aut(G) to send N to N. It is assumed that the order of N is relatively prime to the order of G/N. I have worked on this problem for a while and must be missing something pretty basic.
 
Physics news on Phys.org
In other words, let G be finite, N a normal subgroup of G with the order of N relatively prime to the order of G/N. Prove that if g is in Aut(G)), then g(N)=N.
 
Let's use f instead of g to avoid confusion. First, note that |f(N)|=|N| since f is a bijection. So in particular, |f(N)| and |G/N| are coprime. Next consider an arbitrary element f(n) of f(N) and set k=o(f(n)). Observe that (f(n)N)^k = (f(n)N)^|G/N| = N. So... ?
 
morphism said:
Let's use f instead of g to avoid confusion. First, note that |f(N)|=|N| since f is a bijection. So in particular, |f(N)| and |G/N| are coprime. Next consider an arbitrary element f(n) of f(N) and set k=o(f(n)). Observe that (f(n)N)^k = (f(n)N)^|G/N| = N. So... ?

I guess I would write it a little bit differently. But, yeah, your solution is right. I can't believe how a simply problem can catch me off guard like that.

Assume n is in N and n=/=e. (The case for when n=e is trivial) Let k be the order of f(n). Yes, I think i see: f(n)^k =e and so N = (f(n)N)^k. Therefore, k divides |G/N|, and we get your identity

N = (f(n)N)^k = (f(n)N)^|G/N|.

But, also we have e=f(n)^k=f(n^k). Since f is injective, n^k=e. k must be the order of n (for t<=k and n^t =e implies f(n)^t=e implies k divides t implies k=t). Therefore, k divides |N| also. Therefore, k=1 and your identity reads N=f(n)N whence f(n) is in N. As f is bijective, f(N) must equal N.
 
Last edited:
oh, I forgot to thank you. Thanks for your help.
 
No problem.

By the way, the reason I wrote my solution the way I did was because I wanted to proceed slightly differently. Here's how I would've continued my post: "So o(f(n)N) divides k and |G/N|. But k divides |f(N)| (by Lagrange), and |f(N)| and |G/N| are coprime. Thus o(f(n)N)=1, and consequently f(n) is in N. It follows that f(N) is a subset of N, and hence all of N since |f(N)|=|N|."
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top