betel said:
How did you get the 1/4Sqrt(2) prefactor. Without that i agree
I think you missed the lower limit.
\frac{dt}{d \tau} = \frac{\sqrt{2}}{-\frac{1}{4} \tau^2 + \tau + 1} = - 4 \sqrt{2} \frac{1}{ \tau^2 - 4 \tau - 4} = - 4 \sqrt{2} \frac{1}{( \tau -2 - 2 \sqrt{2})( \tau -2 + 2\sqrt{2})}
Now \frac{1}{( \tau -2 - 2 \sqrt{2})( \tau -2 + 2\sqrt{2})}=\frac{A}{\tau -2 - 2 \sqrt{2}} + \frac{B}{\tau -2 + 2 \sqrt{2}}
So to get B
\frac{1}{\tau - 2 - 2 \sqrt{2}} = \frac{A ( \tau - 2 + 2 \sqrt{2})}{ \tau -2 - 2 \sqrt{2}} + B
set \tau = 2 - 2 \sqrt{2} \Rightarrow B= -\frac{1}{4 \sqrt{2}}
and similarly we find A=\frac{1}{4 \sqrt{2}}
this means then that
t (\tau) = -4 \sqrt{2} \frac{1}{4 \sqrt{2}} \int_0^\tau \frac{d \tau}{\tau -2 - 2 \sqrt{2}} - 4 \sqrt{2} (-\frac{1}{4 \sqrt{2}}) \int_0^\tau \frac{d \tau}{\tau -2 + 2 \sqrt{2}}
=-\int_0^tau \frac{d \tau}{\tau -2 - 2 \sqrt{2}} + \int_0^\tau \frac{d \tau}{\tau -2 + 2 \sqrt{2}}
=-\ln{(\tau -2 + 2 \sqrt{2})} + \ln{(2 \sqrt{2} - 2)} + \ln{( \tau -2 - 2 \sqrt{2})} - \ln{(-2-2 \sqrt{2})}
So t(4)=\ln{2+ 2 \sqrt{2}} - \ln{2-2 \sqrt{2}} - \ln{ 2 \sqrt{2} - 2} + \ln{-2 - 2 \sqrt{2}}
=\ln{ \frac{(2 + \sqrt{2})(-2 - 2 \sqrt{2})}{(2-2 \sqrt{2})( 2 \sqrt{2} - 2 )}
=\ln{ \frac{-12 - 8 \sqrt{2}}{-12 + 8 \sqrt{2}}
How's that?
Thanks!