latentcorpse
- 1,411
- 0
betel said:One tau to much here.
But partial fractions is a good way to go later.
Baah! I'm an idiot!
Ok so I get
t(\tau)=-4 \sqrt{2} \int \frac{1}{4 \sqrt{2}} \frac{d \tau}{\tau -2 - 2 \sqrt{2}} - 4 \sqrt{2} \int (- \frac{1}{4 \sqrt{2}}) \frac{d \tau}{\tau -2 + 2 \sqrt{2}}
=- \int \frac{d \tau}{\tau -2 -2 \sqrt{2}} + \int \frac{d \tau}{\tau -2 + 2 \sqrt{2}}
= \ln{( \tau -2 + 2 \sqrt{2})} - \ln{( \tau -2 -2 \sqrt{2})}
and so
t(4)=\ln{( 2+ 2 \sqrt{2})} - \ln{( 2 - 2 \sqrt{2})} = \ln{ \frac{ 2 + \sqrt{2}}{2 - \sqrt{2}}}
?