MHB What to do when "second differences" are different?

  • Thread starter Thread starter MRF2
  • Start date Start date
Click For Summary
The discussion revolves around analyzing a set of data points to determine the type of mathematical model they represent. The user calculated first and second differences but found inconsistency in the second differences. Participants clarified that if first differences are constant, a linear model is indicated, while constant second differences suggest a quadratic model. The conversation also touched on the possibility of an exponential model if the ratios of consecutive terms are constant. A question was raised about the impact of changing the first data point from -16 to +16 on the ratios.
MRF2
Messages
4
Reaction score
0
Hey, I'm using data points:

X: -1; 0; 1; 2; 3
Y:-16; 4; 1; 1/4; 1/16

I solved for the first differences, and got:
-12; -3; -1/4; -3/16

I then solved for second differences, and got:
9; 11/4; 1/16

Is my math just wrong in a way I can't see, or...?
Thanks!
 
Last edited:
Mathematics news on Phys.org
So, if the first-level differences are the same, you've got a linear model. If the second-level differences are the same, you've got a quadratic model. What do you have if the ratios are constant?
 
Ackbach said:
So, if the first-level differences are the same, you've got a linear model. If the second-level differences are the same, you've got a quadratic model. What do you have if the ratios are constant?

Exponential model?
 
MRF2 said:
Exponential model?

I didn't find the ratios to be the same.
 
Yes, it would be exponential if the ratios are the same. Is the first data point -16 or 16?

Hmm:
4/16 = 1/4
1/4 = 1/4
(1/4)/1 = 1/4
(1/16)/(1/4) = (1/16) * (4/1) = 1/4

So, if the first data point is +16 instead of -16, would the ratios be the same?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 68 ·
3
Replies
68
Views
11K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K