How about just using the definition of "linearly dependent"?
A set of vectors, {u, v, w} is "linearly dependent" if and only if there exist numbers, a, b, c, not all 0, such that au+ bv+ cw= 0.
Here, u= <1, x, 2x>, v= <1, -1, -2> and w= <2, 1, x> so our equation is
a<1, x, 2x>+ b<1, -1, -2>+ c<2, 1, x>= 0 or
<a+ b+ 2c, ax-b+ c, 2ax-2b+ cx>= <0, 0, 0> which gives the three equations
a+ b+ 2c= 0, ax- b+ c= 0, 2ax- 2b+ cx= 0. "x" is a parameter so this is a set of three equations in 3 variables a, b, and c. In general, we can solve such a set for single values of a, b, and c and, since a=b=c= 0 obviously satisfy the equations, that would be the "usual" solution. So we are really asking "for what values of x" can we NOT find a single solution. To answer that, TRY to solve the equations.
Obviously, adding the first two equations eliminates b: (1+x)a+ 3c= 0. Almost as obviously, adding twice the first equation to the third also eliminates b: 2(1+x)a+ (4+ x)c. Multiply the first of those equations by 2 and subtract from the other:(4+ x)c- 6c= (-2+ x)c= 0. If we just divide by -2+ x, we get c= 0 and then we have (1+x)a= 0. Dividing that by -1 gives a= 0. Of course, if a and b are both 0, any of the first three equations gives b= 0. That is the condition that the three vectors be independent. For what values of x can we NOT solve for a or c so the three vectors are dependent?