here is the standard proof of sylow, rediscovered by helmut wielandt.
Next we use actions to produce stabilizer subgroups of prime power orders.
Theorem(Sylow): Let #(G) = mp^r where p does not divide m.
1) There exist subgroups of G of order p^r.
2) All subgroups of order p^r are conjugate to one another,
3) The number of subgroups of order p^r divides m, and is congruent to 1 modulo p.
proof: Suppose G acts on a set S such that p does not divide #(S). S is a disjoint union of orbits, so there is an orbit O(x) whose order is not divisible by p. By the counting principle pr divides #(Stab(x)). So if we can find such an action where #(Stab(x)) is not greater than p^r, we would be done.
Since G is an arbitrary group, the only thing G acts on is G itself, by translation, and conjugation. But G has order divisible by p. We might consider subgroups of G, but we do not know how many there are! So we consider subsets of G, with G acting by translation. If a subgroup H stabilizes a non empty set T, then for any y in T, translation is an injection H-->T taking g in H to gy in T. So H is no larger than T. Thus if we let G act on subsets of size pr, then the stabilizers will have cardinality less than or equal to p^r as desired.
So we hope the number of such subsets is not divisible by p. Of course the set S of subsets of G of size p^r, has order given by the usual binomial coefficient . In this fraction every factor in the top of form (mp^r-k), is divisible by p^s , s less than or equal to r, if and only if k is, if and only if the factor (p^r-k) in the bottom is. Thus every factor of p occurring in the top is canceled by a factor from the bottom. Hence this binomial coefficient is not divisible by p, and thus the stabilizer of any subset in an orbit not divisible by p, gives a subgroup of G of order p^r. QED
Lemma: If H,K are subgroups of G and H lies in N(K), then the set of products HK is a subgroup of G, and HK/K is isomorphic to H/(HmeetK).
proof: exercise.
To count the number of subgroups P1,...,Pn, of order p^r, (called Sylow p - subgroups, or p^r - subgroups) let P1 act by conjugation on all of them. We claim P1 fixes only P1. To prove it, if P1 fixes Pj, then P1 lies in the "normalizer" N(Pj) = {g in G such that g-1Pjg = Pj}. Then P1Pj is a subgroup of G, and (P1Pj)/Pj isomorphic to P1/(P1meetPj). Since the latter quotient group has order dividing #(P1) = p^r, it follows that #(P1Pj) is a power of p. Since P1Pj contains P1, whose order is already the largest possible power of p for a subgroup of G, hence P1 = Pj. Thus the action of P1 on the set S of Sylow p subgroups, has exactly one fixed point. By the counting principle above for p-groups, #(S) is congruent to 1, mod p.
Now let G act on S by conjugation. The G- orbit of Pj contains the P1 orbit of Pj. Thus the G orbits are unions of P1 orbits, and all the P1 orbits except {P1}, have order divisible by p. So the G orbit containing P1 has order congruent to 1 mod p, while the others are divisible by p. But the normalizer of any Pj in G contains Pj. The order of the G orbit of Pj equals the index of that normalizer, hence divides m, so cannot be divisible by p. Thus there is only one G orbit, i.e. all Pj are conjugate. Since the order of each orbit divides m, and there is only one orbit, #(S) divides m. QED.