jellicorse
- 40
- 0
Homework Statement
Can anyone point out where I have gone wrong with this?
Verify that the given function is a solution of the differential equation.
y' -2ty =1 y= e^{t^2}\int^t_0 e^{-s^2}ds+e^{t^2}
The Attempt at a Solution
The steps I have taken are the following:
i) Evaluate integral in expression for y
ii) Differentiate the expression for y
iii)Substitute these values into \frac{dy}{dt}-2ty=1i)Evaluate the integral
\int^t_0e^{-s^2}ds
by substitution:
u=s^2; ds=\frac{1}{-2s}du
\frac{1}{-2s}\int^t_0e^{u}du = \left[\frac{e^{-s^2}}{-2s}\right]^t_0 =\frac{e^{-t^2}}{-2t}
ii)Differentiate expression for y
y=e^{t^2}\cdot \frac{e^{-t^2}}{-2t}+e^{t^2}
y=e^{t^2}-\frac{1}{2}t^{-1}
y'=2te^{t^2}+\frac{1}{2}t^{-2}
iii) Substitute these into y'-2ty=1<br /> <br /> 2te^{t^2}+\frac{1}{2}t^{-2} -2t(2te^t{2}+\frac{1}{2}t^{-2})<br /> <br /> 2te^{t^2}+\frac{1}{2}t^{-2}-4t^2e^{t^2}-t^{-1}Which is not what is required.