Where did the six come from in the Chinese Remainder Theorem?

chaotixmonjuish
Messages
284
Reaction score
0
I need help making sense of my notes:

x congruent 4 mod 11
x congruent 3 mod 13

ai mi Mi yi aiMiyi
4 11 13 6 4*13*6
3 13 11 6 3*11*6

I'm not sure where the six came from
 
Physics news on Phys.org
no clue
usually one solves
13a=4 (mod 11) (a=0,1,...10)
11b=3 (mod 13) (b=0,1,...12)
ie a and be are found by modular division
so that
n*gcd(11,13)+(gcd(11,13)-13a-11b)
with n=1,2,3,...
solves the original problem
 
Chaotixmonjuist:
ai mi Mi yi aiMiyi
4 11 13 6 4*13*6
3 13 11 6 3*11*6 I'm not sure where the six came from

Some number repeats are going on there. But we have 1/11==6 Mod 13, and 1/13==6 Mod 11.
 
I was hoping someone would go a little further with this problem. It may not be clear what is being discussed. (Apparently the teacher must have been writing on the blackboard.)

What I take is being said above is X==4 Mod 11 and X==3 Mod 13. Find X congruent to 11x13= 143.

Setting up the first part of the problem, we want to find 4/13 ==X(1) Mod 11, and 3/11==X(2) Mod 13.

The first case gives x(1)==24==2 Mod 11, and the second gives X(2) ==18==5 Mod 13. So we get x(1)=2, X(2)=5.

We then set up the equation X =13*x(1) + 11*x(2) +k143. (k is chosen so as to give us the smallest positive value.)

Now if we checked this product Mod 11 the last part on x(2) would go out. On the other hand on the first part, 13*x(1), we have included the inverse of 13 mod 11 in our calcuations, so we are only going to get the value of X ==4 Mod 11. Similarly for the other part of the equation.

So that working out the equation: X=13*2 + 11*5 = 81. This value satisfies the conditions.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top