as gendou2 said it's to do with Pauli exclusion, since
\Delta{x}\Delta{p}\geq\frac{\hbar}{2}
when a material is compressed (such as the interior of a star under the effect of gravity) the uncertainty in x gets smaller, leading to less uncertainty in momentum. The fermions are called degenerate when the pressure due to this momentum equals or exceeds(?) the pressure due to the fermions thermal motion. So in a sense it's due to whatever of the fundamental forces is causing the compression, mainly gravity in a stellar core - which is what this problem is usually used for I think, although I'm sure it must be quite important in studying fusion.