GrayGhost said:
Yes, however I was interested in how you would answer that for the lightpath ...
Q) How does a null (zero) length produce a non-null projection unto 3-space, in layman's terms?
GrayGhost
GrayGhost, you set up a laser beam, pointed from one end of the room to the other along your x axis, then observe the projection.
Actually, you are wanting the projection of a single photon world line to project on your x axis. That would be difficult to do, even aside from quantum mechanical issues, because the sequence of photon positions along your x-axis occurs so fast. After all, you are moving along your own 4th dimension (X4) at 186,000 miles every second, so you are traveling enormous distances in a fraction of a second while trying to observe photon movement of just 20 ft or so.
So it is not unreasonable to produce a steady stream of photons in order to generate the picture you need to infer what is going on with the photon world lines and their projection onto your X axis.
By the way, I was a little confused about the process you were trying to describe when multiplying by the imaginary i. It sounds like you are trying to apply an operator (as opposed to doing coordinate transformations).
If you have an X and iY pair of coordinates, you can define a phasor (an amplitude and a phase angle) by establishing a point in that complex plane. Now if you multiply the complex number representing that phasor by the imaginary, i, of course you rotate the phasor, and now you have a new phasor, i.e., a new point in that SAME complex plane. This is what operators do. You haven't created any new coordinates, you've just converted a phasor into a new phasor without doing anything to the coordinates.
So, with your imaginary example, you really implicitly started with a complex plane and a phasor having a zero phase angle (a point on the x axis). You then multiplied by i, rotating that phasor 90 degrees. But you certainly did not create an imaginary axis, and you certainly did not derive a Minkowski time axis. Go back to my original sketch of the pair of symmetric moving observers, because, using purely geometric principles I actually did derive the Minkowski metric. And I still don't understand why you can't recognize it as a very general derivation, since for any two observers in relative motion, you can always apply that analysis, i.e., it is definitely not a special case.
Also, I do not refer to your phasor as a vector, because they are not vectors under affine transformations (remember, you don't have a vector if the components do not transform like coordinates--I think there is a special case for which a complex phasor can be a vector).
Back to your original issue. I think you confuse the 4-dimensional objects with cross-section views computed using Lorentz transformations, which allows your chosen observer at rest to compute observations from the point of view of other observers. The photon is an external object with a world line in 4-dimensional space just as any other point object, i.e., electrons, quarks, etc. So, if you first establish the 4-D objects in the 4-D space, then start examining the various cross-section views of objects from various observer points of view, there may not be the confusion with questions like projecting a null world line to an x axis.
Thus, a 4-D photon does not have zero length as a 4-D object. Now, if you are at rest and you see another observer approaching the speed of light, knowing special relativity, you are thinking, "My gosh! That guy's X4 and X1 axes are rotating dangerously close together--much closer and his X4 and X1 will be colinear and his 3-D cross-section of the universe will be along his time axis--he will experience all past and future simultaneously--and yet time has not changed for him."