Actually, I would object to the phrase "sinusoidal functions"! The sine is just one of those functions. The correct term would be either "trigonometric functions" or "circular functions". In any case, there are a number of similarities between the circular functions (as I am going to call them) and hyperbolic functions. Here are three of them:
1) The graph of x^2+ y^2= 1 is a circle with center at (0, 0) passing through (1, 0). A standard way of defining circular functions is: starting at (1, 0), measure a distance t counter-clockwise around the circumference of the circle (clock-wise if t is negative). Then, whatever the coordinates of the ending point, we define cos(t) to be the x-coordinate, sin(t) to be the y-coordinate.
Similarly, we can graph the hyperbola x^2- y^2= 1 (which is where "hyperbolic" comes from), start at (1, 0) and measure a distance t on the graph. We define cosh(t) to be the x-coordinate of the endpoint and sinh(t) to be the y-coordinate.
2) We often define the "hyperbolic functions" by cosh(x)= (e^x+ e^{-x})/2, sin(x)= (e^x- e^{-x})/2. And, we can use, say Taylor's series for the exponential and sine and cosine functions to show that cos(x)= (e^{ix}+ e^{-ix})/2 and sin(x)= (e^{ix}- e^{-ix})/2i.
3) We can show that y= sin(x) satisfies the differential equation y''= -y with initial conditions y(0)= 0, y'(0)= 1 and that y= cos(x) satisfies the same differential equation with y(0)= 1, y'(0)= 0.
And we can show that y= sinh(x) satisfies the diferential equation y''= y with initial conditions y(0)= 0, y'(0)= 1 and that y= cosh(x) satisfies the same differential equation with y(0)= 0, y'(0)= 1.