[In mice], the axonal branching structure of each motor neuron was unique. We compared each axon with its functional counterparts, as defined by the size principle, in other muscles, and found substantial topological differences. Left-right pairs of corresponding neurons in the same animal showed no less variation than ipsi- or contralateral pairs from different animals. Such intra-animal variance is surprising, as each pair of neurons had identical genetic background and presumably experienced an identical environment. This result suggests that the branching pattern of these neurons was not predetermined, which contrasts strongly with the situation in invertebrates. For instance, the C. elegans connectome revealed remarkable stereotypy in the structure of the neural circuit. Worm neurons that are ontogenetic counterparts share almost identical branching patterns and connectivity both within an individual and across different animals, even though they may not be exact replicas of each other [
18,
19]. In annelids [
55,
56], insects [
57–
62], and crustaceans [
63,
64] individual neurons can also be identified, and their axonal branching patterns are stereotyped. In particular, this mammalian result contrasts with the stereotypy of neuromuscular innervation in invertebrates. For example, although there are fine structural differences in the terminal branching of axons at NMJs of any particular muscle fiber in insects, even these branches seem to have morphological regularities that are recognizable between different animals [
65,
66]. In mammals not only is the preterminal branching highly variable (as shown in this paper), but our experience suggests that no two NMJs look the same. Thus axonal branching in this mammalian system seems fundamentally different from that found in invertebrates.