MHB Why did Sophie Come Up with Germain Primes?

  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Primes
matqkks
Messages
280
Reaction score
5
Why did Germain come up with her Germain primes? I am intrigued to know why Sophie came across these primes. Do they have any applications?
 
Mathematics news on Phys.org
matqkks said:
Why did Germain come up with her Germain primes? I am intrigued to know why Sophie came across these primes. Do they have any applications?

Hi matqkks, :)

Yes they do have applications. As the following article points out they are applied in Cryptography.

Sophie Germain prime - Wikipedia, the free encyclopedia

Also I have seen these being applied in certain Homomorphic encryption instantiations like the following,

https://eprint.iacr.org/2011/279.pdf
 
One reason they are useful for crypto is that if you set $p = 2q + 1$ for some large prime $q$, then the order of $(\mathbb{Z}/p\mathbb{Z})^\times$ is equal to $\varphi(p) = p - 1 = 2q$ which is not smooth (in fact, in a sense it is optimally non-smooth since $p - 1$ will always be even). Many group-theoretic integer factorization and discrete logarithm algorithms basically rely on the order of the group being smooth. So choosing such a $p$ helps thwart those methods.

It should be noted that while this is (to my knowledge) still useful for constructing difficult discrete logarithm problems, it is no longer very useful in the case of integer factorization for two reasons:

- current integer factorization limits (150-digit semiprimes or so, i.e. 75-digit primes) operate on numbers so large that $p - 1$ is unlikely to be smooth over any reasonable factor base anyway
- the elliptic curve method (ECM) factorization algorithm does not operate on the multiplicative group of integers modulo $p$, but on a random elliptic curve over the field $\mathbb{Z}_p$, which has an order anywhere in the interval $p + 1 \pm 2 \sqrt{p}$, and some of these curves are going to have smooth order no matter what $p$ is (in other words, you cannot efficiently defend against this algorithm). In fact, very accurate bounds on the probability of finding a smooth curve as a function of $p$ are known, which shows that the algorithm is ridiculously efficient, but, sadly, still subexponential time. But I digress.

Another possible use is in primality testing, using Lagrange's theorem (see Pocklington's primality test for details). The natural generalization of Sophie-Germain primes are called Cunningham chains, which are finite sequences of integers of the form $p_{i + 1} = 2p_i + 1$ such that all $p_i$ are prime.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top