arildno has given an example that I have seen before; it is good to see that someone sees that Mathematics is not an autonomous subject in and of itself and that it must be connected to describing the physical world. Now, stochastic, you must understand that Mathematics has no meaning unless it is used to describe some quantity. For example, the symbol "3" has absolutely no meaning unless you say "3 nails", "3 cars", "3 inches", "3 Newtons of force", "3 meters", etc. There is a reason why a negative number times a negative number is a postive number; I will explain it in a way similar to arildno's method:
Picture a lever sitting on a fulcrum. If I apply a downward force to the lever at a position to the right of the fulcrum , the lever will rotate clockwise about the fulcrum. Now let's call downward forces "negative forces", upward forces "positive forces", distance to the right of the fulcrum "positive distance", distance to the left of the fulcrum "negative distance", clockwise rotation "negative rotation", and counterclockwise rotation "positive rotation.
If I multiply an upward force (positive force) by a distance to the right of the fulcrum (positive distance) I will have the magnitude of a torque that causes a counterclockwise (positive) rotation about the fulcrum; therefore, the torque is positive. Now, if I multiply an upward force (positive force) by a distance to the left of the fulcrum (negative distance) I will have the magnitude of a torque that causes a clockwise (negative) rotation about the fulcrum; therefore, the torque is negative. Now, if I multiply a downward force (negative force) by a distance to the left of the fulcrum (negative distance) I will have the magnitude of a torque that causes a counterclockwise (positive) rotation about the fulcrum; therefore, the torque is negative; therefore, a negative number times a negative number is a positive number.
Multiply all the different combinations of forces and distances in this lever example and you will see that a positive times a positive is always a positive; that a positive times a negative is always a negative; that a negative times a positive is always a negative; and lastly, that a negative times a negative is always a positive.
Lastly, stochastic, let me say this. You probably didn't understand negative numbers because you didn't know in what areas of science they are actually used. Don't let anyone tell you that mathematicians just make up rules that we have to follow, and that negative numbers is just one of those rules; THAT'S A LOAD OF CRAP. Negative numbers exist for a reason, and they exist so that we can describe physical quantities correctly; just look back at the example I just gave: there is more to defining torque than just magnitude (such as 5Nm or 15 ftlb), there is also what we engineers call "sense", that is, the direction of the rotation. A negative torque tends to rotate a body clockwise, whereas a positive torque tends to rotate a body counterclockwise.