Why Do Lines 3 and 4 Equate in Random Walk Probability Calculations?

tanzl
Messages
60
Reaction score
0
Suppose X is a random walk with probability
P(X_k=+1)=p and P(X_k=-1)=q=1-p
and S_n=X_1+X_2+...+X_n

Can anyone explain why does line 3 equal to line 4?
P(S_k-S_0≠0 ,S_k-S_1≠0 ,…,S_k-S_{k-1}≠0)
=P(X_k+X_{k-1}+⋯+X_1≠0 ,X_k+X_{k-1}+⋯+X_2≠0 ,…,X_k≠0)
=P( X_k≠0 ,X_k+X_{k-1}≠0 ,…,X_k+X_{k-1}+⋯+X_1≠0 )...Line 3
=P( X_1≠0 ,X_2+X_1≠0 ,…,X_k+X_{k-1}+⋯+X_1≠0 ).....Line 4
=P( X_1≠0 ,X_1+X_2≠0 ,…,X_1+X_2+⋯+X_k≠0 )

The above comes from a book on random walk, I attached a link here (page 36),
http://books.google.com/books?id=7suiLOKqeYQC&printsec=frontcover#v=onepage&q&f=false
Thanks
 
Physics news on Phys.org
It's because your Xi's are all i.i.d.. That means you can always interchange them however you like, since they each have the same distribution.
 
Hey tanzl.

It looks like they are just substituting k = 1 into line 4, based on the premise that the relationship holds for k >= 1.

As for an explanation, it looks like a simple random walk with independent increments, but from the page you cited, it appears that they are not necessarily independent which is a more general assumption than the simple random walk models.

(When each incremental random variable is independent, this simplifies things somewhat)
 
Thanks for the replies.
alexfloo said:
It's because your Xi's are all i.i.d.. That means you can always interchange them however you like, since they each have the same distribution.

Hi Alexfloo, in what way do you mean X can interchange? I do know that X are iid, but I don't see how this property can help when line 3 is adding more terms in reverse time order and line 4 is adding more terms in increasing time order.
chiro said:
Hey tanzl.

It looks like they are just substituting k = 1 into line 4, based on the premise that the relationship holds for k >= 1.

As for an explanation, it looks like a simple random walk with independent increments, but from the page you cited, it appears that they are not necessarily independent which is a more general assumption than the simple random walk models.

(When each incremental random variable is independent, this simplifies things somewhat)

Hi Chiro, I don't think it is just simply substituting k=1 into line 3, it does not hold for k>1.
From my understanding, X is independent incremental random variable, I am not sure about S. But S has Markovian property.

BTW, I have read in a research paper on this problem. The proof in the paper only stated that it uses symmetry and independence property without further clarification. I am not really sure what does symmetry property refer to.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top