tanzl
- 60
- 0
Suppose X is a random walk with probability
P(X_k=+1)=p and P(X_k=-1)=q=1-p
and S_n=X_1+X_2+...+X_n
Can anyone explain why does line 3 equal to line 4?
P(S_k-S_0≠0 ,S_k-S_1≠0 ,…,S_k-S_{k-1}≠0)
=P(X_k+X_{k-1}+⋯+X_1≠0 ,X_k+X_{k-1}+⋯+X_2≠0 ,…,X_k≠0)
=P( X_k≠0 ,X_k+X_{k-1}≠0 ,…,X_k+X_{k-1}+⋯+X_1≠0 )...Line 3
=P( X_1≠0 ,X_2+X_1≠0 ,…,X_k+X_{k-1}+⋯+X_1≠0 ).....Line 4
=P( X_1≠0 ,X_1+X_2≠0 ,…,X_1+X_2+⋯+X_k≠0 )
The above comes from a book on random walk, I attached a link here (page 36),
http://books.google.com/books?id=7suiLOKqeYQC&printsec=frontcover#v=onepage&q&f=false
Thanks
P(X_k=+1)=p and P(X_k=-1)=q=1-p
and S_n=X_1+X_2+...+X_n
Can anyone explain why does line 3 equal to line 4?
P(S_k-S_0≠0 ,S_k-S_1≠0 ,…,S_k-S_{k-1}≠0)
=P(X_k+X_{k-1}+⋯+X_1≠0 ,X_k+X_{k-1}+⋯+X_2≠0 ,…,X_k≠0)
=P( X_k≠0 ,X_k+X_{k-1}≠0 ,…,X_k+X_{k-1}+⋯+X_1≠0 )...Line 3
=P( X_1≠0 ,X_2+X_1≠0 ,…,X_k+X_{k-1}+⋯+X_1≠0 ).....Line 4
=P( X_1≠0 ,X_1+X_2≠0 ,…,X_1+X_2+⋯+X_k≠0 )
The above comes from a book on random walk, I attached a link here (page 36),
http://books.google.com/books?id=7suiLOKqeYQC&printsec=frontcover#v=onepage&q&f=false
Thanks