Why Do Pendry's Cloaking Equations Differ in My Calculations?

  • Thread starter Thread starter andresordonez
  • Start date Start date
  • Tags Tags
    article
andresordonez
Messages
65
Reaction score
0
Hi, I'm reading this article (you may need to register to view it, the registration is free though).

http://www.sciencemag.org/content/312/5781/1780.full

(can I post a link to this article in Dropbox so that people reading this don't have to register without getting an infraction from the moderators??)

and I'm getting this:

<br /> \epsilon&#039;_{r&#039;} = \epsilon \frac{R_2}{R_2-R_1} (r&#039;-R_1)^2 \sin(\theta&#039;)<br />
<br /> \epsilon&#039;_{\theta&#039;} = \epsilon \frac{R_2}{R_2-R_1} \sin(\theta&#039;)<br />
<br /> \epsilon&#039;_{\phi&#039;} = \epsilon \frac{R_2}{R_2-R_1} \sin(\theta&#039;)<br />

instead of equations (7) in Pendry's article:

<br /> \epsilon&#039;_{r&#039;} = \frac{R_2}{R_2-R_1} \frac{(r&#039;-R_1)^2}{r&#039;}<br />
<br /> \epsilon&#039;_{\theta&#039;} = \frac{R_2}{R_2-R_1}<br />
<br /> \epsilon&#039;_{\phi&#039;} = \frac{R_2}{R_2-R_1}<br />

The difference between these equations and the ones I get is not only the missing r&#039; and the extra sin(\theta&#039;) but also the extra \epsilon

This is what I'm doing. The new coordinates are given by equations (6):

<br /> r^{\prime}=R_{1}+r\frac{\left(R_{2}-R_{1}\right)}{R_{2}}<br />
<br /> \theta^{\prime}=\theta<br />
<br /> \phi^{\prime}=\phi<br />

The permittivity transforms according to:
<br /> \epsilon_{r}^{\prime}=\epsilon\frac{Q_{\theta&#039;}Q_{\phi&#039;}}{Q_{r&#039;}}<br />
<br /> \epsilon_{\theta}^{\prime}=\epsilon\frac{Q_{r&#039;}Q_{\phi&#039;}}{Q_{\theta&#039;}}<br />
<br /> \epsilon_{\phi}^{\prime}=\epsilon\frac{Q_{r&#039;}Q_{\theta&#039;}}{Q_{\phi&#039;}}<br />

where Q_{u} is given by:
<br /> Q_u^2 = \left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial u}\right)^2<br />

Then:
<br /> Q_{r^{\prime}}^{2}=\left(\frac{\partial x}{\partial r^{\prime}}\right)^{2}+\left(\frac{\partial y}{\partial r^{\prime}}\right)^{2}+\left(\frac{\partial z}{\partial r^{\prime}}\right)^{2}<br />
<br /> \frac{\partial x}{\partial r^{\prime}}=\frac{\partial x}{\partial r}\frac{\partial r}{\partial r^{\prime}}+\frac{\partial x}{\partial\theta}\frac{\partial\theta}{\partial r^{\prime}}+\frac{\partial x}{\partial\phi}\frac{\partial\phi}{\partial r^{\prime}}=\frac{\partial x}{\partial r}\frac{\partial r}{\partial r^{\prime}}=\sin\theta\cos\phi\frac{R_{2}}{R_{2}-R_{1}}=\sin\theta^{\prime}\cos\phi^{\prime}\frac{R_{2}}{R_{2}-R_{1}}<br />
<br /> \frac{\partial y}{\partial r^{\prime}}=\frac{\partial y}{\partial r}\frac{\partial r}{\partial r^{\prime}}+\frac{\partial y}{\partial\theta}\frac{\partial\theta}{\partial r^{\prime}}+\frac{\partial y}{\partial\phi}\frac{\partial\phi}{\partial r^{\prime}}=\frac{\partial y}{\partial r}\frac{\partial r}{\partial r^{\prime}}=\sin\theta\sin\phi\frac{R_{2}}{R_{2}-R_{1}}=\sin\theta^{\prime}\sin\phi^{\prime}\frac{R_{2}}{R_{2}-R_{1}}<br />
<br /> \frac{\partial z}{\partial r^{\prime}}=\frac{\partial z}{\partial r}\frac{\partial r}{\partial r^{\prime}}+\frac{\partial z}{\partial\theta}\frac{\partial\theta}{\partial r^{\prime}}+\frac{\partial z}{\partial\phi}\frac{\partial\phi}{\partial r^{\prime}}=\frac{\partial z}{\partial r}\frac{\partial r}{\partial r^{\prime}}=\cos\theta\frac{R_{2}}{R_{2}-R_{1}}=\cos\theta^{\prime}\frac{R_{2}}{R_{2}-R_{1}}<br />
<br /> Q_{r^{\prime}}^{2}=\left(\frac{R_{2}}{R_{2}-R_{1}}\right)^{2}<br />

<br /> Q_{\theta^{\prime}}^{2}=\left(\frac{\partial x}{\partial\theta^{\prime}}\right)^{2}+\left(\frac{\partial y}{\partial\theta^{\prime}}\right)^{2}+\left(\frac{\partial z}{\partial\theta^{\prime}}\right)^{2}<br />
<br /> \frac{\partial x}{\partial\theta^{\prime}}=\frac{\partial x}{\partial\theta}=r\cos\theta\cos\phi=\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\cos\theta^{\prime}\cos\phi^{\prime}<br />
<br /> \frac{\partial y}{\partial\theta^{\prime}}=\frac{\partial y}{\partial\theta}=r\cos\theta\sin\phi=\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\cos\theta^{\prime}\sin\phi^{\prime}<br />
<br /> \frac{\partial z}{\partial\theta^{\prime}}=\frac{\partial z}{\partial\theta}=-r\sin\theta=-\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}<br />
<br /> Q_{\theta^{\prime}}^{2}=\left[\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\right]^{2}<br />

<br /> Q_{\phi^{\prime}}^{2}=\left(\frac{\partial x}{\partial\phi^{\prime}}\right)^{2}+\left(\frac{\partial y}{\partial\phi^{\prime}}\right)^{2}+\left(\frac{\partial z}{\partial\phi^{\prime}}\right)^{2}<br />
<br /> \frac{\partial x}{\partial\phi^{\prime}}=\frac{\partial x}{\partial\phi}=-r\sin\theta\sin\phi=-\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}\sin\phi^{\prime}<br />
<br /> \frac{\partial y}{\partial\phi^{\prime}}=\frac{\partial y}{\partial\phi}=r\sin\theta\cos\phi=\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}\cos\phi^{\prime}<br />
<br /> \frac{\partial z}{\partial\phi^{\prime}}=\frac{\partial z}{\partial\phi}=0<br />
<br /> Q_{\phi^{\prime}}^{2}=\left[\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\right]^{2}\sin^{2}\theta^{\prime}<br />

Finally:
<br /> \epsilon_{r^{\prime}}=\epsilon\frac{\left[\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\right]^{2}\sin\theta^{\prime}}{\frac{R_{2}}{R_{2}-R_{1}}}=\epsilon\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)^{2}\sin\theta^{\prime}<br />
<br /> \epsilon_{\theta^{\prime}}=\epsilon\frac{\left(\frac{R_{2}}{R_{2}-R_{1}}\right)^{2}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}}{\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)}=\epsilon\frac{R_{2}}{R_{2}-R_{1}}\sin\theta^{\prime}<br />
<br /> \epsilon_{\phi^{\prime}}=\epsilon\frac{\left(\frac{R_{2}}{R_{2}-R_{1}}\right)^{2}\left(r^{\prime}-R_{1}\right)}{\frac{R_{2}}{R_{2}-R_{1}}\left(r^{\prime}-R_{1}\right)\sin\theta^{\prime}}=\epsilon\frac{R_{2}}{R_{2}-R_{1}}\csc\theta^{\prime}<br />

Any kind of help is more than welcome!
 
Physics news on Phys.org
That must have taken some time to type. sorry no actual help from me here.
 
@bm0p700f:

not more time than with a pencil, check this out: http://www.lyx.org/
 
Well, the extra \epsilon (relative permittivity) is just because in the paper it is assumed to be 1 (vacuum or air)
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top