Not to mention that when we can describe something as a group (or a Ring, Field, Algebra, etc) then there are many tools we have at our disposal to figure stuff out about a particular group/ring/etc.
So, a vector space forms a group. If you tell me this, I automatically know a lot of stuff about it. I know that you have defined some operation on it. I know that this operation has inverses. I know there is an identity element. I know that inverses are unique. I know that I can form subgroups. I know that if T is a homomorphism from V into itself then the kernel is a subgroup. I know that if the kernel is just {0} then the T is an isomorphism. But, just wait till you get to higher algebra classes. You will see that a vector space, say R^3 forms something called an algebra. Then you can see that matrcies and linear transformations are all the same (well isomorphic.) Also, a vector space is an algebraic structure in its own right. In fact, some texts define a vector space to be a group over a field of scalars. So, why do we characterize things as vector spaces? Well, we know a whole lot about vector spaces. Same with groups.