NascentOxygen said:
It's a case of convection being the obvious answer, but wrong. The curtain is drawn in even under a cold water shower.
The air drawn down with the spray leaves a low pressure region around the shower-head, so once the water and air separate on the floor the air makes a rapid return upwards outside the region of falling spray. As air speeds upwards past the curtain the low pressure (Bernouli principle) draws the curtain inwards. The result is a horizontal-donut-shaped air circulation pattern, a vortex in the shower cubicle: air and spray cascading down in the centre, and air returning upwards outside the cascade.
Wikipedia notes that someone was awarded the Ig Nobel Prize in Physics in 2001 for his contribution to the answer of why shower curtains billow inwards.
Since I stuck my neck out, I guess I'm going to have to give this the full treatment, with research and experimentation. But my early take is that I'm not buying it at all. Clicking through the wiki, we can start with this:
Predictably, I soon heard from adherents of the other, known as the chimney effect. They argued that air heated by the hot shower water rose and pulled cool air in from below, taking the curtain with it — convection, in other words. As proof, they advised running a cold shower, apparently believing that the curtain would remain motionless. I did as suggested. The shower curtain still blew up and in, though not quite as vigorously. OK, geniuses — you were saying?
I have three fairly serious problems with this:
1. He says testing with cold water shows the effect "not quite as vigorously", indicating that stack effect is at least part of it, but he only qualitatively described it. It isn't clear if he attempted to quantify it. He should have. The quote has a "bucking-the-mainstream" pop-science feel to it that sets off warning bells for me.
2. For the CFD analysis, he uses 8 GPM, which is triple the maximum code allowed flow rate (which was dropped by half in 1994 - the article was published in 2001). This will magnify the vortex effect, improperly skewing the results away from the stack effect. I would like to see the full results though...
3. Did he include a person in the shower in the CFD analysis? A person would seriously impact the formation and operationg of such a vortex. In particular, if the stream is almost entirely directed at your back, there would be minimal entrainment and your body/head would interfere with the vortex. There is a screenshot of the CFD analysis in the Scientific American article:
It may be just an illustration for newsiness, but the slice is cut along the wrong axis and there is no person.
This is a "rubber meets the road" issue though, and testing is really the way to go. So I did: I have a shower with a lightweight cloth curtain and no magnets at the bottom. The head is a standard medium pattern, 2.5 gpm head. I folded the decorative over-curtain up over the top so it would be out of the way, turned-on the shower, with a trajectory similar to the CFD screenshot and shot a video. For 30 seconds, the curtain did not budge. Then the water started warming up and the curtain was pulled substantially inward.
I'll post more details later, but for me it was a clear-cut demonstration of a pretty run-of-the-mill issue. I see this issue to be practically an urban myth given occasional not serious enough scientific treatment that almost seems designed to improperly discount the conventional explanation. Not unlike the mpemba effect.