As posted by spamanon, gravity pulls down, and the pavement pushes up, creating an inwards torque along the roll axis. This is opposed by the inwards force applied to the contact patches by the ground, which are below the center of mass of the bike, resulting in an outwards torque along the roll axis. If the torques are equal, then the lean angle remains the same.
For normal bicycles and motorcyles, self-stability is mostly due steering geometry, the extended steering pivot axis intercepts the pavement in front of the contact patch, so that when the bike is leaned, the upwards force from the ground behind the pivot axis steers the front tire into the direction of the lean. This geometry also adds a caster effect. This is called trail, and tends to cause a bike to return to a vertical orientation from a leaned orientation (the direction the bike is headed will have changed).
Gyroscopic related steering torque is a reaction to change in lean angle. (There's also a very small roll torque related to change in direction, a reaction to rotation about vertical axis called yaw ). For a bike in a coordinated turn (no change in lean angle), there is no gyroscopic steering torque. As a bike leans inwards, the gyrscopic steering torque tends to undecorrect, and as the steering geometry corrects the bike back to a vertical orienation, the gyroscope steeing torque opposes the steering geometry correction. At normal speeds gyroscopic torques act as a a damper, helping to prevent over-correction. At very high speeds, the gyroscopic torque dominates the steering geometry torque, and the mathematically predicted tendency is to fall inwards at a very slow rate (called capsize mode), but the rate is so slow that it's imperceptible to the rider, and/or the net result due to other factors is a bike at very high speed tends to hold the current lean angle.
Some experimental bicyles use an alternate form of steering geometry. A mass is suspended above and in front of the bike so that a lean produces a yaw torque on the bike causing a free to steer front wheel to steer into the turn, without using trail or caster geometries. Typically these bikes will use counter rotating wheels to eliminate any gyroscopic reactions.