Why does an inverse exist only for surjective functions?

AI Thread Summary
A function must be surjective for its inverse to exist because the inverse is defined only on the range of the function. If a function is not onto, there will be elements in the codomain that do not correspond to any element in the domain, making it impossible to define an inverse for those elements. For example, the exponential function is one-to-one and has an inverse (the natural logarithm), but it only maps to positive values, limiting the inverse's domain. Additionally, if the range is a subset of the codomain, there may be values in the codomain without a corresponding input, complicating the definition of the inverse. Therefore, a function must be surjective to ensure a well-defined inverse exists.
kay
Messages
60
Reaction score
2
In other words, why does a function have to be onto (or surjective, i.e. Range=Codomain) for its inverse to exist?
 
Mathematics news on Phys.org
kay said:
In other words, why does a function have to be onto (or surjective, i.e. Range=Codomain) for its inverse to exist?

The key property for a function to have an inverse is that it is 1-1. Any 1-1 function will have an inverse. The inverse, however, can only be defined on the range of the function. Perhaps this is best explained by an example:

The exponential function ##e^x## maps the real number line ##(-\infty, \infty)## onto ##(0, \infty)##. The exponential is 1-1, so there exists an inverse (the natural logarithm). But, the inverse is only defined on ##(0, \infty)##. You can't define the inverse function on all of the real number line.

This raises perhaps a technical point that if you are considering the set of functions that map ##\mathbb{R}## to ##\mathbb{R}## then the exponential function is in this set, but there is no inverse within this set of functions. From that point of view, the inverse doesn't exist.
 
  • Like
Likes kay
PeroK said:
The key property for a function to have an inverse is that it is 1-1. Any 1-1 function will have an inverse. The inverse, however, can only be defined on the range of the function. Perhaps this is best explained by an example:

The exponential function ##e^x## maps the real number line ##(-\infty, \infty)## onto ##(0, \infty)##. The exponential is 1-1, so there exists an inverse (the natural logarithm). But, the inverse is only defined on ##(0, \infty)##. You can't define the inverse function on all of the real number line.

This raises perhaps a technical point that if you are considering the set of functions that map ##\mathbb{R}## to ##\mathbb{R}## then the exponential function is in this set, but there is no inverse within this set of functions. From that point of view, the inverse doesn't exist.
Actually my question was, that why can't an inverse exist for a function whose range is not necessarily equal to but is rather a subset of the codomain.
 
kay said:
Actually my question was, that why can't an inverse exist for a function whose range is not necessarily equal to but is rather a subset of the codomain.

An inverse of a function f: A \to B is a function g: B \to A such that g(f(a)) = a for all a \in A and f(g(b)) = b for all b \in B. An inverse is unique if it exists.

Let f: \{1,2\} \to \{1,2,3\} : x \mapsto x. Now the inverse of f, if it exists, is a function g: \{1,2,3\} \to \{1,2\}. Now we must have g(1) = 1 and g(2) = 2, but what value do you assign to g(3) such that f(g(3)) = 3?
 
  • Like
Likes kay
pasmith said:
An inverse of a function f: A \to B is a function g: B \to A such that g(f(a)) = a for all a \in A and f(g(b)) = b for all b \in B. An inverse is unique if it exists.

Let f: \{1,2\} \to \{1,2,3\} : x \mapsto x. Now the inverse of f, if it exists, is a function g: \{1,2,3\} \to \{1,2\}. Now we must have g(1) = 1 and g(2) = 2, but what value do you assign to g(3) such that f(g(3)) = 3?
I got it. Thanks a lot for your help. :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top