Why Does Boltzmann Distribution Depend Only on Temperature?

In summary, the Boltzmann distribution for a collection of atoms is independent of their total energy because it depends only on their temperature. This is due to the fact that in a closed system in thermal equilibrium, energy is conserved on average and the total energy is fixed by the temperature. This creates a one-to-one correspondence between the average energy and temperature. However, in certain cases, such as for an ideal monatomic gas, the ground state may still be more probable even if the energy of the system is much larger than the energy of the ground state. This is because temperature is not directly equivalent to energy and can still remain constant even with a large energy value.
  • #1
aaaa202
1,169
2
Why is the Boltzmann distribution for a collection of atoms independent of their total energy? (it only depends on their temperature)

One would assume that if the energy is high there'd be a greater tendency to be in excited states or am I wrong?
 
Physics news on Phys.org
  • #2
The Boltzmann distribution is valid for a subsystem of a larger closed system in thermal equilibrium, which allows the exchange of energy but not the exchange of particles. Energy is thus conserved on average, and the total value of energy is fixed by the temperature, which is the Lagrange parameter introduced into the problem to maximize entropy under the constraint that the mean energy has this given value. Thus, there is a one-to-one correspondence between the average energy and temperature. E.g. for an ideal monatomic gas non-degenerate gas, the total internal energy is given by

[tex]U=\langle E \rangle=\frac{3}{2} N k T,[/tex]


where [itex]T[/itex] is the absolute temperature, [itex]N[/itex] the particle number contained in the subsystem, and [itex]k[/itex] Boltzmann's constant.
 
  • #3
hmm okay, but consider this:

If you try to find the probability of an atom in hot resevoir of other atoms appearing in an excited state at T=300K you find that the probability of finding the atom in the ground state is overwhelmingly more probable.

But what if the energy of the system of N particles is so big, that E/N is far larger than the energy of the ground state. How can the ground state then still be so probable? We still assume that T=300K (temperature isn't directly the same as energy, so isn't this possible?)
 

FAQ: Why Does Boltzmann Distribution Depend Only on Temperature?

What is the Boltzmann distribution?

The Boltzmann distribution is a statistical probability distribution that describes the distribution of energy among particles in a system at a specific temperature. It is used to understand the behavior of thermodynamic systems and can be applied to a wide range of systems, from gases to solid materials.

Why does the Boltzmann distribution only depend on temperature?

The Boltzmann distribution is based on the principles of thermodynamics, which state that energy flows from hotter objects to colder objects until they reach thermal equilibrium. Therefore, the temperature of a system determines the average energy of its particles and the distribution of that energy.

How does temperature affect the Boltzmann distribution?

As the temperature of a system increases, the average energy of its particles also increases. This leads to a wider distribution of energies among the particles, resulting in a flatter Boltzmann distribution curve. Conversely, as the temperature decreases, the distribution curve becomes narrower and taller.

What other factors can affect the Boltzmann distribution?

Aside from temperature, the Boltzmann distribution can also be influenced by external factors such as pressure, volume, and the type of particles in the system. However, these factors have a smaller impact compared to temperature, which remains the primary determinant of the distribution.

How is the Boltzmann distribution used in practical applications?

The Boltzmann distribution is widely used in various fields, including physics, chemistry, and engineering. It is used to predict the behavior of gases, study molecular dynamics, and understand the properties of materials. It also plays a crucial role in the development of technologies such as thermoelectric devices, solar cells, and refrigeration systems.

Similar threads

Replies
2
Views
711
Replies
17
Views
1K
Replies
9
Views
2K
Replies
10
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top