Why Does Changing Wire Gauge Affect Voltage and Current in a Generator?

AI Thread Summary
Changing wire gauge in a generator affects voltage and current due to variations in resistance and the number of turns in the winding. The discussion reveals that while increasing wire size should reduce resistance and allow for higher current capacity, it may also lead to fewer turns, which can decrease voltage output. The no-load voltage should ideally remain independent of wire gauge, but factors like leakage inductance can cause minor fluctuations. The relationship between voltage and current follows the principle that for a constant power output, if voltage decreases, current must increase, and vice versa. Accurate measurements and a clear design description are essential for troubleshooting the generator's performance.
NY Operations Tech
Messages
1
Reaction score
0
TL;DR Summary
Generator wiring question
I am building a small generator. 12 - 5/8″ magnets rotating around 9 - 3/4″ diameter, 28-gauge copper enameled wire. Not under load, I am getting 50 volts at 1 amp. But when I increase the wire size to 24-gauge, I am getting 15 volts at .25 amps. I thought amps go up when volts go down.
 
Engineering news on Phys.org
NY Operations Tech said:
TL;DR Summary: Generator wiring question

I am building a small generator. 12 - 5/8″ magnets rotating around 9 - 3/4″ diameter, 28-gauge copper enameled wire. Not under load, I am getting 50 volts at 1 amp. But when I increase the wire size to 24-gauge, I am getting 15 volts at .25 amps. I thought amps go up when volts go down.
Not under load with 50 volts at one amp makes no sense. If it not under load then there is no current. 0 amps.
 
  • Like
Likes hutchphd and davenn
Without a clear description of the two different designs, we cannot help you. A clear description includes at least one diagram that clearly shows the entire generator, including the winding design.
 
  • Like
Likes hutchphd, davenn and berkeman
NY Operations Tech said:
28-gauge copper enameled wire. Not under load, I am getting 50 volts at 1 amp. But when I increase the wire size to 24-gauge, I am getting 15 volts at .25 amps. I thought amps go up when volts go down.
As has been mentioned, "no-load" means no output current.

The no-load output voltage should be independent of the gauge of the wire, to a first approximation. Can you make those two measurements?

(As you increase the size of the wire, leakage inductance will generally go up, so you may get a small decrease in the no-load output voltage.)

If all you are doing is increasing the diameter of the wire, you should see an increase in output current capability because the parasitic resistance of the windings is lower.
 
NY Operations Tech said:
TL;DR Summary: Generator wiring question

I thought amps go up when volts go down.
For the same amount of power, Yes.
For the same power, the product of Volts and Amps is the same.

Have you counted the number of turns with each wire size? Are they the same?
Larger wire may mean fewer turns, especially if in the same space.

Also, no-load output voltage is directly dependant not only on number of turns but also on rotational speed and magnet strength.

There could be some shorted turns in the 24ga. winding.

Cheers,
Tom
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top