Why does i-epsilon prescription not cure spin 1 propagator

  • Thread starter Thread starter geoduck
  • Start date Start date
  • Tags Tags
    Propagator Spin
geoduck
Messages
257
Reaction score
2
Within the path integral framework, the reason you have to use Fadeev-Popov quantization for spin 1 is because the matrix of the coefficients of the quadratic part of the free-Lagrangian is non-invertible. But doesn't an i\epsilon prescription take care of that? The same thing happens with the Klein-Gordan field: the matrix of coefficients of the quadratic part is not invertible because it has a zero eigenvalue: k^2-m^2=0 when the particle has a k such that it is on shell. Adding i\epsilon ensures k^2-m^2+i\epsilon can never be zero, so the matrix is invertible. Doesn't the i\epsilon prescription also prevent g^{\mu \nu}k^2-k^\mu k^\nu +i\epsilon=0 for spin 1?
 
Physics news on Phys.org
The Fadeev-Popov method is introduced for another reason. It is not used for general spin-1 field but for gauge fields (not all spin-1 fields are gauge fields). The main idea is that, since you have gauge invariance, the action insider the functional integral is constant over an infinite set of configurations for the gauge fields. On this set the action cannot provide the usual convergence and hence the functional integral is infinite.
Using the Fadeev-Popov method you fix the gauge and manage to factorize the contribution from this infinite set, that then cancels with the normalization of the functional integral.
 
  • Like
Likes Demystifier
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top