A "limit product" of the form ##\infty \cdot 0## is ill-defined. The limit may be ##0##, ##\infty##, or any finite number, or it may not exist at all.
Here are four examples where ##\lim_{x \rightarrow \infty} f(x) = \infty## and ##\lim_{x \rightarrow \infty} g(x) = 0##, but ##\lim_{x \rightarrow \infty} f(x)g(x)## yields different answers:
1. Let ##f(x) = x^2## and ##g(x) = 1/x##. Then ##\lim_{x \rightarrow \infty} f(x) g(x) = \lim_{x \rightarrow \infty} x = \infty##.
2. Let ##f(x) = x^2## and ##g(x) = 1/x^3##. Then ##\lim_{x \rightarrow \infty} f(x) g(x) = \lim_{x \rightarrow \infty} 1/x = 0##.
3. Let ##c > 0## and ##f(x) = cx## and ##g(x) = 1/x##. Then ##\lim_{x \rightarrow \infty} f(x) g(x) = \lim_{x \rightarrow \infty} cx/x = c##.
4. Let ##f(x) = x## and ##g(x) = \sin(x)/x##. Then ##\lim_{x \rightarrow \infty} f(x) g(x) = \lim_{x \rightarrow \infty} \sin(x)## does not exist.