Why Does Solving Matrices Lead to Incorrect Variable Identification?

Taylor_1989
Messages
400
Reaction score
14
I have figured out the answer to the question, but I have no idea why and how it works.

I have attached a copy of the question. I do apologize I am still having trouble putting into latex, I can install some but not all, so bare with me.

So if I multiple out the matrices I get \chi2 + 10\rightarrow I then minus this from the quadratic \chi2 + 8\chi + 10 = 0 \rightarrow Which then gives me 8\chi = 0

reagrange and I have \chi = -8

Which is the right answer, I checked the mark scheme but I am suppose to find the value of K and not x. This make me think I have done the wrong maths but got the right answer.

Could someone point out if I have gone wrong, it would be very helpful.

It is the one highlighted.
 

Attachments

  • matrices.jpg
    matrices.jpg
    27 KB · Views: 489
Mathematics news on Phys.org
Hey Taylor_1989 and welcome to the forums.

Expanding your equation gives x^2 + 10 = kx which implies x^2 - kx + 10 = 0. But we know the equation is x^2 + 8x + 10 = 0 which means -k = 8 so k = -8.

Remember you know the equation, and you are finding the value of k when you expand your matrix multiplication and collect terms: solving for x is finding the roots of the function where you are solving x^2 + 8x + 10 = 0 for the variable x.
 
chiro said:
Hey Taylor_1989 and welcome to the forums.

Expanding your equation gives x^2 + 10 = kx which implies x^2 - kx + 10 = 0. But we know the equation is x^2 + 8x + 10 = 0 which means -k = 8 so k = -8.

Remember you know the equation, and you are finding the value of k when you expand your matrix multiplication and collect terms: solving for x is finding the roots of the function where you are solving x^2 + 8x + 10 = 0 for the variable x.

Thanks for the help, for some reason I got my equations mixed up, it nevered occurred to me to put Kx into a quadratic and then compare. I should have spotted it really. Well learn by your mistakes. Once again many thanks
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top