Why Does the Constant 't' Appear in the Derivative of a Homogeneous Function?

Sidney
Messages
12
Reaction score
0
I've been reading a book on economics and they defined a homogeneous function as: ƒ(x1,x2,…,xn) such that
ƒ(tx1,tx2,…,txn)=tkƒ(x1,x2,…,xn) ..totally understandable.. they further explained that a direct result from this is that the partial derivative of such a function will be homogeneous to the degree k-1.They proved this by simply differentiating both sides of the equation. My problem arises when they differentiate the left hand side (with respect to the first argument as an arbitrary choice). They say the partial differential(of the LHS wrt x1) is:

(∂ƒ(tx1,tx2,…,txn)/∂x1).t

my question is where does the t come from.. ..please bear with me
 
Mathematics news on Phys.org
They used the chain rule. When you take a derivative of

f(g(x)) with respect to x, you first take the derivative of f, but then you need to multiply by the derivative of g.

\frac{d}{dx}f(g(x))=f'(g(x))\cdot g'(x)

So

\frac{d}{dx}f(tx)=f'(tx)\cdot \frac{d}{dx}tx = f'(tx)\cdot t

assuming t is independent of x (constant).
 
thank you :) I don't know why it seems so obvious now ..I did think of the t as being a result of the chain rule but for some reason the way they wrote it down made no sense to me and had me stuck...I think it's because they wrote (∂ƒ(tx1,tx2,…,txn)/∂x1) which to me means with respect to x( i.e. ∂x1) and not with respect to the change in the intermediate function(tx) and so it came across as meaning the complete derivative of ƒ1 encompassing all the intermediate processes..

the way you have your functions written down is so neat. If you don't mind me asking what did you use because the way I'm doing it takes forever, is very messy and I can't write in fraction form
 
Last edited:
Sidney said:
thank you :) I don't know why it seems so obvious now ..I did think of the t as being a result of the chain rule but for some reason the way they wrote it down made no sense to me and had me stuck...I think it's because they wrote (∂ƒ(tx1,tx2,…,txn)/∂x1) which to me means with respect to x( i.e. ∂x1) and not with respect to the change in the intermediate function(tx) and so it came across as meaning the complete derivative of ƒ1 encompassing all the intermediate processes..

Things often become clear again when it's explained in simple terms :)

Sidney said:
the way you have your functions written down is so neat. If you don't mind me asking what did you use because the way I'm doing it takes forever, is very messy and I can't write in fraction form

Check out this page:
https://www.physicsforums.com/threads/introducing-latex-math-typesetting.8997/

And what you can also do to help speed up the learning process is to quote a post and observe what the poster had written in their latex.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top