revolution200
- 29
- 0
The epsilon delta rule states
\epsilon_{ijk}\epsilon_{pqk}=\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp}
I am constantly using this but get stuck when it is applied.
For example
\epsilon_{ijk}\epsilon_{pqk}A_{j}B_{l}C_{m}=(\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp})A_{j}B_{l}C_{m}
This then becomes
A_{j}B_{i}C_{j}-A_{j}B_{j}C_{i}
Can anybody please explain this result?
Is it true that
\delta_{ij}a_{i}=a_{j}
If so does this not apply to the above
\epsilon_{ijk}\epsilon_{pqk}=\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp}
I am constantly using this but get stuck when it is applied.
For example
\epsilon_{ijk}\epsilon_{pqk}A_{j}B_{l}C_{m}=(\delta_{ip}\delta_{jq}-\delta_{iq}\delta_{jp})A_{j}B_{l}C_{m}
This then becomes
A_{j}B_{i}C_{j}-A_{j}B_{j}C_{i}
Can anybody please explain this result?
Is it true that
\delta_{ij}a_{i}=a_{j}
If so does this not apply to the above
Last edited: