RandallB
- 1,550
- 0
Triangle with extra area?
Four puzzle pieces; two right triangles and two six sided polygons with all right angles.
The two six sided polygons can form a perfect 12 by 12 square as shown figure1.
They are put together in two different ways to create triangular shapes of exactly the same height and width (fig 1 & 2).
BUT, some extra uncovered area, a 4 by 4 square, shows up in fig 2!
*Where does this extra space come from?
*You can show you know the solution with one descriptive word.
Without a drawing function it's hard to show in 'text drawing' but with the dimensions given above and figures below it should be easy to make four paper cutouts to help solve if needed.
Four puzzle pieces; two right triangles and two six sided polygons with all right angles.
The two six sided polygons can form a perfect 12 by 12 square as shown figure1.
They are put together in two different ways to create triangular shapes of exactly the same height and width (fig 1 & 2).
BUT, some extra uncovered area, a 4 by 4 square, shows up in fig 2!
*Where does this extra space come from?
*You can show you know the solution with one descriptive word.
Without a drawing function it's hard to show in 'text drawing' but with the dimensions given above and figures below it should be easy to make four paper cutouts to help solve if needed.
. . . . . FIGURE 1
0
000
000000
000000000
000000000000
0000000000000000
000000000000000000000
00000000000000000000000
222222222222222222222222II
222222222222222222222222III II I
222222222222222222222222II II II II I
222222222222222222222222III II II II II II
111111112222222222222222II II II II II II II III
111111112222222222222222III II II II II II II II II II
111111112222222222222222II II II II II II II II II II II II
111111112222222222222222III II II II II II II II II II II II II II
111111111111111111111111II II II II II II II II II II II II II II II II
111111111111111111111111III II II II II II II II II II II II II II II II III
111111111111111111111111II II II II II II II II II II II II II II II II II II III
111111111111111111111111III II II II II II II II II II II II II II II II II II II II I
. . . . . . .figure 2
II
III II I
II II II II I
III II II II II II
II II II II II II II III
III II II II II II II II II II
II II II II II II II II II II II II
III II II II II II II II II II II II II II
II II II II II II II II II II II II II II II II
III II II II II II II II II II II II II II II II III
II II II II II II II II II II II II II II II II II II III
III II II II II II II II II II II II II II II II II II II II I
11111111________2222222222232222222222220
11111111________222222222222222222222222000
11111111________222222222222222222222222000000
11111111________222222222222222222222222000000000
1111111111111111111111112222222222222222000000000000
11111111111111111111111122222222222222220000000000000000
1111111111111111111111112222222222222222000000000000000000000
111111111111111111111111222222222222222200000000000000000000000
Last edited: