B Why Does This Algebraic Identity Work in Relativistic Doppler Calculations?

Daniel Sellers
Messages
117
Reaction score
17
I seem to remember this Algebra identity being covered in one of my classes years ago, but it has cropped back up in studying the relativistic doppler effect for light.

Can anyone please show me the intermediate steps to show that:

(1+x)/(sqrt(1-x^2) = sqrt((1+x)/(1-x))

or similarly

(sqrt(1-x^2)/(1+x) = sqrt((1-x)/(1+x))

I can solve problems well enough by factoring gamma out of these equations but it is bugging me that all the texts I can find keep taking this for granted and I can't see why.
 
Mathematics news on Phys.org
## 1-x^2 =(1-x)(1+x) ##. Comes from ## a^2-b^2=(a-b)(a+b) ##. The rest is just things like ## \frac{u^1}{u^{1/2}}=u^{1/2} ## etc. where ## u^{1/2}=\sqrt{u} ##.
 
  • Like
Likes Daniel Sellers
I knew it was something obnoxiously simple and obvious! Thanks very much!
 
  • Like
Likes Charles Link
Suggestion: to see quickly you can take the square from both side ## \frac{(1+x)^2}{1-x^2}\,=\, \frac{1+x}{1-x}##, now it is quite obvious ...
Ssnow
 
Ssnow said:
Suggestion: to see quickly you can take the square from both side ## \frac{(1+x)^2}{1-x^2}\,=\, \frac{1+x}{1-x}##, now it is quite obvious ...
Ssnow
Easy -- just cancel the exponents!
$$ \frac{(1 + x)^2}{1 - x^2} = \frac{(1 + x)^{\rlap{/}2}}{1 - x^{\rlap{/}2}} = \frac{1 + x}{1 - x}$$
:oldbiggrin:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top