Higher derivatives[edit]
Faà di Bruno's formula generalizes the chain rule to higher derivatives. Assuming that
y =
f(
u) and
u =
g(
x), then the first few derivatives are:
\begin{aligned}{\frac {dy}{dx}}&={\frac {dy}{du}}{\frac {du}{dx}}\\[4pt]{\frac {d^{2}y}{dx^{2}}}&={\frac {d^{2}y}{du^{2}}}\left({\frac {du}{dx}}\right)^{2}+{\frac {dy}{du}}{\frac {d^{2}u}{dx^{2}}}\\[4pt]{\frac {d^{3}y}{dx^{3}}}&={\frac {d^{3}y}{du^{3}}}\left({\frac {du}{dx}}\right)^{3}+3\,{\frac {d^{2}y}{du^{2}}}{\frac {du}{dx}}{\frac {d^{2}u}{dx^{2}}}+{\frac {dy}{du}}{\frac {d^{3}u}{dx^{3}}}\\[4pt]{\frac {d^{4}y}{dx^{4}}}&={\frac {d^{4}y}{du^{4}}}\left({\frac {du}{dx}}\right)^{4}+6\,{\frac {d^{3}y}{du^{3}}}\left({\frac {du}{dx}}\right)^{2}{\frac {d^{2}u}{dx^{2}}}+{\frac {d^{2}y}{du^{2}}}\left(4\,{\frac {du}{dx}}{\frac {d^{3}u}{dx^{3}}}+3\,\left({\frac {d^{2}u}{dx^{2}}}\right)^{2}\right)+{\frac {dy}{du}}{\frac {d^{4}u}{dx^{4}}}.\end{aligned}