Levitating Magnets: The Superconducting Solution?

  • Thread starter Thread starter Forestman
  • Start date Start date
Forestman
Messages
212
Reaction score
2
With normal magnetic objects if you try to make one levitate above the other, it will just flip over and stick to the other magnet. Why does this not happen when using a superconductor. Why is a magnet able to levitate above a superconductor without flipping over to the opposite poll.
 
Physics news on Phys.org
The magnet and superconductor repel due to the Meissner effect, not due to the the superconductor being a magnet.

A weak (attractive) magnetism is induced due to inhomogeneities in the superconductor, which leads to the the attractive force holding the magnet in place.
 
alxm said:
A weak (attractive) magnetism is induced due to inhomogeneities in the superconductor, which leads to the the attractive force holding the magnet in place.

uhh no.

It's due to flux pinning effects.
 
alxm said:
A weak (attractive) magnetism is induced due to inhomogeneities in the superconductor, which leads to the the attractive force holding the magnet in place.

nbo10 said:
uhh no.

It's due to flux pinning effects.

In a way alxm is describing the flux pinning effect. I don't intuitively see it as an attractive force, more as just a local potential energy minimum for the system when the field lines line up. A small movement by either object would make the field lines want to bend close to the the boundaries if the superconductor to still line up, thus the curvature of the lines would increase which is equal to a higher energy state. Therefore it will require an external force to move either the magnet or the superconductor.

To address the original question: the superconductor is not a magnet in the same way, the flux pinning effect merely "freezes" the magnetic field lines in a certain configuration inside the superconductor (because of inhomogeneities in the superconductor). It will be more desirable for the magnet to have its field lines line up with the ones frozen in the superconductor, therefore it will strive to stay in the place it was when the field lines where frozen (when the superconductor entered its superconducting phase).

If you have a magnet levitating above another, then it will flip over since the system is in an unstable equilibrium. The levitating state is at a stationary point, but not at a local potential energy minimum. A tiny perturberation of the system will make it "roll down the potential hill" by flipping over and reaching a lower energy state.
 
Thanks phz, I understand it now. I also watched a video on You Tube about it, and that really helped.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top