Why Doesn't the Fourier Series of a Dirac Comb Match Pointwise Values?

Click For Summary

Discussion Overview

The discussion revolves around the discrepancies observed when evaluating the Fourier series of a Dirac comb, particularly at specific points like t = 1/2. Participants explore the mathematical intricacies involved in the Fourier series representation and its convergence properties, as well as the implications of using delta functions in pointwise evaluations.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant notes that the Fourier series expansion does not yield the expected values of the Dirac comb at certain points, specifically at t = 1/2.
  • Another participant emphasizes the need to express the function in closed form and consider limits for specific values of t.
  • Some participants suggest that the evaluation of the Fourier series at individual points may not be meaningful due to the nature of delta functions and their discontinuities.
  • A participant introduces Grandi's series to illustrate a point about convergence and suggests that the original series can be manipulated to show equality with the left-hand side under certain conditions.
  • One contributor explains that the oscillatory behavior of the Fourier series does not converge pointwise as N increases, but integrates well when multiplied by a continuous function.
  • Another participant shares a geometric series example to highlight convergence issues when evaluating at specific points.

Areas of Agreement / Disagreement

Participants express differing views on the evaluation of the Fourier series at individual points, with some agreeing that pointwise evaluation is problematic while others propose methods to reconcile the discrepancies. The discussion remains unresolved regarding the best approach to understanding the Fourier series of the Dirac comb.

Contextual Notes

Limitations include the dependence on the definitions of convergence and the nature of delta functions, as well as unresolved mathematical steps in the evaluation process.

sahil_time
Messages
108
Reaction score
0
http://en.wikipedia.org/wiki/Dirac_comb

Please have a look at the Fourier Series section, and its last equation.

Let T = 1.

After expanding the Equation

x(t) = 1 + 2cos(2∏t) + 2cos(4∏t) + 2cos(6∏t) ...

Now this does not give the original Dirac Comb.
Eg: at t = 1/2

x(1/2) = 0

But RHS

= 1 + 2cos(2∏*1/2) + 2cos(4∏*1/2) + 2cos(6∏*1/2) ...
= 1 + 2cos(∏) + 2cos(2∏) + 2cos(3∏) ...
= 1 -2 + 2 -2 + 2...
≠ LHSWhat is the problem?
 
Physics news on Phys.org
The mathematics is tricky here. You need to set it up as a function of t in closed form and take limits for t = multiples of 1/2.
 
mathman said:
The mathematics is tricky here. You need to set it up as a function of t in closed form and take limits for t = multiples of 1/2.

Agreed Mathman, after doing that you will get the LHS ≠ RHS. Where LHS is the dirac comb graph, and RHS is the computation via Fourier series. Can you please elaborate?
 
sahil_time said:
Agreed Mathman, after doing that you will get the LHS ≠ RHS. Where LHS is the dirac comb graph, and RHS is the computation via Fourier series. Can you please elaborate?

What I was trying to say is that you need to see what the Fourier series sums to first.

I'll give a simple example of the procees I was talking about.

1 + x + x2 + ... = 1/(1-x) for |x| < 1. for x = -1, the l.h.s is 1 - 1 + 1 ..., while the r.h.s = 1/2. This makes sense only if you get the sum first where it converges and then extend it.

What I am suggesting is the closed form for values where it converges and then extend it.
 
mathman said:
What I was trying to say is that you need to see what the Fourier series sums to first.

I'll give a simple example of the procees I was talking about.

1 + x + x2 + ... = 1/(1-x) for |x| < 1. for x = -1, the l.h.s is 1 - 1 + 1 ..., while the r.h.s = 1/2. This makes sense only if you get the sum first where it converges and then extend it.

What I am suggesting is the closed form for values where it converges and then extend it.

Mathman if we just look at the second equation on the wikipedia page, which has absolutely no convergence issues because we can choose T as per our convenience, and if we let T=1, and expand it, it will not give LHS = RHS for values other than t = nT. Where n is an integer.
 
mathman said:
What I was trying to say is that you need to see what the Fourier series sums to first.

I'll give a simple example of the procees I was talking about.

1 + x + x2 + ... = 1/(1-x) for |x| < 1. for x = -1, the l.h.s is 1 - 1 + 1 ..., while the r.h.s = 1/2. This makes sense only if you get the sum first where it converges and then extend it.

What I am suggesting is the closed form for values where it converges and then extend it.

I had taken the limits for T=1 between t=1/2 and t=-1/2.
 
Last edited:
mathman said:
The mathematics is tricky here. You need to set it up as a function of t in closed form and take limits for t = multiples of 1/2.
I think i found the answer , it is unusual.

Where 1-1+1-1+1... = 1/2

http://en.wikipedia.org/wiki/Grandi's_series#Heuristics

So the original RHS = 1 -2 + 2 - 2 + 2...

= 1 -2( 1 - 1 + 1 - 1...)

=1 -2( 1/2 )...Using Grandi Series

=1 -1

=0

=LHS.
 
I am am an engineer not a mathematician, so my answer will not pretend to be rigorous.

Anyway, when you are dealing with animals like delta functions it does not make sense to try to evaluate what they "equal to" point-wise. They only make any sense when multiplied by a "nice" function (continuous, differentiable, falls of fast as t-> infinity) and integrated. Thus, we would expect that the Fourier series doesn't make sense evaluated at individual points either. Also, since the Dirac comb has nasty discontinuities (in some sense), we expect Gibbs phenomenon to be present in the Fourier series.

Going back to your problem, for finite N, if I did my math correctly (just using sum of geometric series here and basic trig identities, nothing fancy),
<br /> S_N(t) = \frac{1}{T} \sum_{n=-N}^{N} \exp\left( i n \frac{2 \pi}{T} t \right) = \frac{\sin\left( \frac{2 \pi}{T} (N + \frac{1}{2}) t \right)}{T \sin\left( \frac{\pi}{T}t\right)}<br />
With T=1 and t=0.5 for example, this is either 1 or -1, depending upon the value of N and no matter how big N gets. So pointwise the sequence S_N (t) does not converge at all as N goes to infinity. However, if you look at the oscillations in the series as a function of t, as N gets bigger and bigger, the oscillations get more closely spaced in time, so when you multiply by a continuous, smooth function and integrate there is no contribution to the integral in the neighborhood of t=0.5 as N goes to infinity. Likewise for every point in between the locations of the delta functions.

It can be instructive to actually plot the Fourier series S_N(t) over some time interval for a few values of N (say 10, 30, 100) just to see how it behaves.

jason
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
9K
  • · Replies 6 ·
Replies
6
Views
2K