Why in nature there is no spinless fermion?

  • Thread starter Thread starter wdlang
  • Start date Start date
  • Tags Tags
    Fermion Nature
wdlang
Messages
306
Reaction score
0
why?

i can see the link between spin value and the statistics in quantum mechanics
 
Physics news on Phys.org
wdlang said:
why?

i can see the link between spin value and the statistics in quantum mechanics

Well, actually there are spinless fermions of sorts. It just depends on what you define to be a "real" particle is. I am of course talking about Faddeev-Popov Ghosts in quantized non-Abelian Gauge theories. These particles are spinless fermions (in other words spin = 0, but they anti-commute.) However they do not possesses positive definite norm, which makes them less "real" if you like. More to the point, however, they depend on the choice of gauge. Interestingly, infinite renormalization constants depend on these spinless fermions, but finite gauge invariant quantities do not: they simply cancel out. This amazing fact is far from obvious by any argument that I have heard of. It takes a lot of hard formalism to prove it. So you decide for yourself if Faddeev-Popov Ghosts are real spinless fermions. Most physicists will not elevate them to the status of being "real" particles however.
 
fermi said:
Well, actually there are spinless fermions of sorts. It just depends on what you define to be a "real" particle is. I am of course talking about Faddeev-Popov Ghosts in quantized non-Abelian Gauge theories. These particles are spinless fermions (in other words spin = 0, but they anti-commute.) However they do not possesses positive definite norm, which makes them less "real" if you like. More to the point, however, they depend on the choice of gauge. Interestingly, infinite renormalization constants depend on these spinless fermions, but finite gauge invariant quantities do not: they simply cancel out. This amazing fact is far from obvious by any argument that I have heard of. It takes a lot of hard formalism to prove it. So you decide for yourself if Faddeev-Popov Ghosts are real spinless fermions. Most physicists will not elevate them to the status of being "real" particles however.

i am not familiar with quantum field theory

i work in the low energy regime

the problem i am concerned with is, possibly there is no contradiction if we take a spinless or spin integer particle and impose fermionic commutation relations on it
 
Which kind of expression do you have in mind?

If you do point-particle quantum mechanics then you should study something like Grassmann numbers (like in supersymmetric QM).

But in many cases there are not even commutation relations b/c the particles are not the canonical variables.Think about the non-rel. Pauli equation: I think you can plug in any spin you like. The fundamental variables are still x and p, so no anticommutation at all.

I think w/o using some sort of field theory you will never observe something like commutation or anticommutation relations between particles.
 
wdlang said:
the problem i am concerned with is, possibly there is no contradiction if we take a spinless or spin integer particle and impose fermionic commutation relations on it
If you are worried about the standard phrase "let us study spinless fermions" that you can find in many books on QM and condensed matter, then my answer would be no, there is no contradiction in imposing anticommutation relations on spinless fermions. Very often in non-interacting problems the spin degree of freedom is irrelevant, so you can forget it altogether and then, in the end, multiply your end result by a factor of two. In this case you just have too identical "flavors" of fermions that do not talk to each other. For example, most textbook solutions for the famous Tomonaga-Luttinger model (fermions in one spatial dimension) are done for spinless fermions, since then bosonization leads to a simple solution in terms of charge waves.

Things are of course very different for interacting systems, since the two spin species interact via Coulomb interaction. In the Tomonaga-Luttinger model, this leads to spin density waves that make matters a little bit more complicated.
EDIT: small clarification
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top