Why Is Capacitance Considered Constant in a Conductor?

AI Thread Summary
Capacitance (C) in a conductor is defined as a constant ratio of charge (Q) to potential (V), expressed by the equation Q = CV. While the relationship between charge and potential is linear, it is important to note that this linearity applies to the total charge on the conductor rather than the incremental charge added. The capacitance remains constant as long as the physical dimensions and material properties of the conductor do not change, independent of the electrical properties. Therefore, while adding charge increases potential, the ratio of Q to V, which defines capacitance, stays constant. Understanding this distinction clarifies the behavior of capacitors during charging and discharging processes.
Higgsono
Messages
93
Reaction score
4
The capacitance C of a conductor is given to be a constant relationship between charge Q and potential V of the conductor given by Q = CV.
But how can C be a constant? Because the potential of the conductor will not be a linear relationship of the charge that I add. THe more charge there is on the conductor already, the more work is needed to add additional charge. Hence the potential I add by bringing new charges to the conductor must depend on the charge already there.

What is it that I don't understand?
 
Physics news on Phys.org
Higgsono said:
Because the potential of the conductor will not be a linear relationship of the charge that I add.
The potential is linear with the charge that is on the conductor, not the charge that is added. I.e. ##V## is proportional to ##Q## not ##\Delta Q##
 
Dale said:
The potential is linear with the charge that is on the conductor, not the charge that is added. I.e. ##V## is proportional to ##Q## not ##\Delta Q##

huh? Q and V are not constants. I must be able to double the charge and the relation should be the same right?
 
Higgsono said:
huh? Q and V are not constants. I must be able to double the charge and the relation should be the same right?
Yes, the proportionality between ##Q## and ##V## is constant, but what you are describing in your text is the relationship between ##\Delta Q## and ##\Delta W##. ##\Delta Q\ne Q## and ##\Delta W \ne V##
 
Remember that C is a physical quantity. Remember back to the simple capacitance days and how two plates make a capacitor. The capacitance depends on dimensions and material properties. It does not depend on electrical properties. It is a constant as long as the materials and the physical dimensions don't change.

As for the charge and voltage, capacitance is the ratio of the two, C=Q/V; therefore Q and V don't have to be linear, they can follow any line as long as the ratio between them remains constant.

If you want to look at the different lines that Q and V follow, look at charging and discharging a capacitor at constant current versus constant voltage/resistance.
 
Let’s try it more quantitatively
Higgsono said:
Because the potential of the conductor will not be a linear relationship of the charge that I add.
That is correct. ##V \propto Q## not ##V \propto dQ##

Higgsono said:
THe more charge there is on the conductor already, the more work is needed to add additional charge.
Yes, ##dW/dQ=f(Q)## where ##df/dQ>0##

Specifically
##dW/dt=P=IV=V \; dQ/dt##
##dW/dQ = V = Q/C =f(Q)##
So ##df/dQ =1/C>0##

Higgsono said:
Hence the potential I add by bringing new charges to the conductor must depend on the charge already there.
No, it does not follow. Instead ##dV/dQ = 1/C##
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.
Back
Top