Gerenuk
- 1,027
- 5
Why is it that kinetic energy is conserved - for example during collisions?
Or can one prove in general that for
<br /> m_1\frac{\mathrm{d}v_1}{\mathrm{d}t}=\frac{\alpha(\vec{s}_2-\vec{s}_1)}{|\vec{s}_1-\vec{s}_2|^3}<br />
<br /> m_2\frac{\mathrm{d}v_2}{\mathrm{d}t}=\frac{\alpha(\vec{s}_1-\vec{s}_2)}{|\vec{s}_1-\vec{s}_2|^3}<br />
the term
<br /> m_1\frac{v_1^2}{2}+m_2\frac{v_2^2}{2}-\frac{\alpha}{|\vec{s}_1-\vec{s}_2|}<br />
is conserved?
Or can one prove in general that for
<br /> m_1\frac{\mathrm{d}v_1}{\mathrm{d}t}=\frac{\alpha(\vec{s}_2-\vec{s}_1)}{|\vec{s}_1-\vec{s}_2|^3}<br />
<br /> m_2\frac{\mathrm{d}v_2}{\mathrm{d}t}=\frac{\alpha(\vec{s}_1-\vec{s}_2)}{|\vec{s}_1-\vec{s}_2|^3}<br />
the term
<br /> m_1\frac{v_1^2}{2}+m_2\frac{v_2^2}{2}-\frac{\alpha}{|\vec{s}_1-\vec{s}_2|}<br />
is conserved?