Why is $\lim_{x \rightarrow \infty} (1+\frac{1}{x})^x = e$?

  • Thread starter Thread starter Zarlucicil
  • Start date Start date
  • Tags Tags
    Limit
Zarlucicil
Messages
13
Reaction score
2
This is a pretty basic limit question regarding the limit,

\lim_{x \rightarrow \infty} (1+\frac{1}{x})^x = e

Wolframalpha gives the following reasoning for this answer:

\lim_{x \rightarrow \infty} (1+\frac{1}{x})^x = e^{\lim_{x \rightarrow \infty} x\ln{(1+\frac{1}{x})}} = e^{\lim_{t \rightarrow 0} \frac{\ln{(1+t)}}{t}} = e^{\lim_{t \rightarrow 0} \frac{ \frac{d\ln{(1+t)}}{dt}}{\frac{d}{dt}t}}= e^{\lim_{t \rightarrow 0} \frac{1}{1+t}} = e^1

My question is, by the same reasoning, why is the following not true? (where log is log base 10)

\lim_{x \rightarrow \infty} (1+\frac{1}{x})^x = 10^{\lim_{x \rightarrow \infty} x\log{(1+\frac{1}{x})}} = 10^{\lim_{t \rightarrow 0} \frac{\log{(1+t)}}{t}} = 10^{\lim_{t \rightarrow 0} \frac{ \frac{d\log{(1+t)}}{dt}}{\frac{d}{dt}t}}= 10^{\lim_{t \rightarrow 0} \frac{1}{1+t}} = 10^1

Am I missing something??
 
Physics news on Phys.org
Wooooow, hold on, I understand what I did wrong...

The derivative of \log{(1+t)} is NOT \frac{1}{1+t} but rather \frac{1}{(1+t)\ln{10}}

Sorry for wasting the time of those who've read this.
 
Back
Top