Why is my particular solution not matching with the book's answer?

newtomath
Messages
37
Reaction score
0
Given t^2 y'' -t(t+2)y' = (t+2)y= 2t^3 and y1= t, y2= te^t
Find the particular solution-

I ve worked the problem to [ -2t^2 -2t] by:
-t * Integral [ 2t* te^t/ t^2e^t] + te^t * Integral [ 2t^2/ t^2e^t]


whereas the book states that it is simply -2t^2. Can you guys tell me where I made my mistake, I am stumped.
 
Physics news on Phys.org
newtomath said:
Given t^2 y'' -t(t+2)y' = (t+2)y= 2t^3 and y1= t, y2= te^t

Is that first = supposed to be +?
 
newtomath said:
Given t^2 y'' -t(t+2)y' = (t+2)y= 2t^3 and y1= t, y2= te^t
Find the particular solution-

I ve worked the problem to [ -2t^2 -2t] by:
-t * Integral [ 2t* te^t/ t^2e^t] + te^t * Integral [ 2t^2/ t^2e^t]

whereas the book states that it is simply -2t^2. Can you guys tell me where I made my mistake, I am stumped.
To be honest, I don't completely understand this, but I'm not sure you've actually done anything wrong. You got the particular solution -2t^2-2t, and the book says -2t^2. But notice that one of the homogeneous solutions is t. If you add a linear combination of the homogeneous solutions to the particular solution, you get another equally valid particular solution. So, if -2t^2 -2t works, so does -2t^2 -2t + 2t = -2t^2.
 
Well a private solution here will be of the form:
At^3+Bt^2+Ct
where you can see quite immediately that A=0 (cause it has a term of t^4 which obviously gets nullified).

I did the calculation and got exactly as the book, try again.
PS
the C term doesn't get canceled though.
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top