nonequilibrium
- 1,412
- 2
Can anybody tell me why
\sum_{j=1}^p |x_j-y_j| \leq \left( \sum_{j=1}^p 1\right)^{1/2} \left( \sum_{j=1}^p |x_j-y_j|^2 \right)^{1/2}
is true?
Thank you!
\sum_{j=1}^p |x_j-y_j| \leq \left( \sum_{j=1}^p 1\right)^{1/2} \left( \sum_{j=1}^p |x_j-y_j|^2 \right)^{1/2}
is true?
Thank you!