Why is solving the 3-body mechanical problem considered impossible?

AI Thread Summary
The 3-body mechanical problem is considered unsolvable in general terms because it lacks a solution in elementary functions, making it impossible to find an analytic solution. This issue is linked to chaos theory, where minor changes in initial conditions can lead to vastly different outcomes, complicating predictability. Numerical solutions exist, but they are limited by the "small divisors" problem, which affects the convergence of perturbation theory near resonances. While supercomputers can provide numerical approximations, they cannot overcome the inherent unpredictability of the system due to the precision required for initial conditions. Ultimately, the complexity of the 3-body problem highlights the limitations of both analytical and numerical methods in classical mechanics.
SpY]
Messages
63
Reaction score
0
I've heard that it's apparently impossible to solve a 3-body mechanical problem, but I'd just like to know why. I'm told there are so many integrals and n'th order differential equations that you can't find an analytic solution, only a numerical one, but I want to know is it physically impossible, or just too difficult? I also know it's to do with chaos theory - that a small change in the initial condition makes a huge change in the whole system. But can supercomputers do it?

For instance to find the motion between the sun, Earth and moon simultaneously.
 
Last edited:
Physics news on Phys.org
The three body problem does not have a general solution in the elementary functions. This is a well-known result -- and so what? Lots and lots and lots of differential equations do not have solutions in the elementary functions. All that means is the things we have somewhat arbitrarily decided to denote as the elementary functions are not sufficiently powerful to describe a lot of differential equations.

As far as the three body problem is concerned, there is a series solution discovered about 100 years ago -- and it is pretty much worthless. There is nothing wrong with numerical solutions. Even the elementary functions require numerical solutions. What is sin(1)?
 
SpY],

What you read is probably a journalist's view on the KAM theorem and the "small divisors" problem in classical mechanics (like the htree body system).

You can easily find more material on the web about what the "small divisors" problem is.
Essentially it means that the pertubation theory fails to give convergent solution series near resonnances. This problem cannot be overcome by using "better methods", nor numerical methods. It actually implies, that in some circumstances you need a huge amount of information (numerical precision) to predict some outcome to questions like "is the solar system stable". Practically this sets a limit on predictability since we never know the inititial condition with an arbitrary precision. However, the importance of this problem may depend on the system under study: for example it is less acute for the sun-earth-moon system than for the whole solar system.

Please not that the precision of the calculation does not wipe out the resonance effect (or "the problem").
It still remains true that small changes in the initial conditions could change drastically the outcome.
It is furthermore alway possible to find a problem that will defeat any computer in this respect.
This does not imply that we cannot understand such sistuations by other means that simply calcualting the trajectories with ever increasing precision.

I can't tell you more about the KAM since this is known to be a very difficult topic and it far beyond my mathematical abilities.

Michel
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top