If the internal resistance of the voltmeter is r, then, the voltage drop across it is:
<br />
V = \frac{(220 \, \mathrm{V}) \, r}{1 \, \mathrm{k \Omega} + 1 \, \mathrm{k \Omega} + 1 \, \mathrm{k \Omega} + r}<br />
If the voltmeter is digital and the precision is 0.01 V, it means that everything above 219.995 V will be rounded up to 220 V, so:
<br />
\frac{(220 \, \mathrm{V}) \, r}{1 \, \mathrm{k \Omega} + 1 \, \mathrm{k \Omega} + 1 \, \mathrm{k \Omega} + r} > 219.995 \, \mathrm{V}<br />
<br />
220 \, r > (3 \, \mathrm{k \Omega} + r) \, 219.995<br />
<br />
0.005 \, r > 659.985 \, \mathrm{k\Omega}<br />
<br />
r > 1.32 \times 10^5 \, \mathrm{k\Omega} = 132 \, \mathrm{M\Omega}<br />
So, the internal resistance of the voltmeter is very high.