TheBlackNinja said:
how can probability waves interfere destructively?
RUTA said:
Exactly. In the Euclidean path integral approach to lattice gauge theory for example, the transition amplitude works like a partition function for computing expectation values of observables and one can obtain information (e.g., particle masses) without Wick rotating back to real time. But, when used to compute correlation functions, you have an amplitude and must Wick rotate back to real time, add amplitudes and square to produce a probability. The reason is precisely what BlackNinja points out -- different configurations can interfere, unlike classical stat mech. So, I'm also interested in the answer to this question.
Dear RUTA,
I intended to avoid replying to TheBlackNinja's (TBN) post, partially because his question may contain several different questions, so it may require a long answer, but your post was "the last straw", so I'll try to answer.
1) So one question that may be implicit in TBN's question is: irrespective of quantum theory, can a real, rather than a complex function, describe destructive interference?
I guess we can answer this question affirmatively, as, in general, wave equations can be written for real functions.
2) Another possible implicit question in TBN's question: can quantum theory be reformulated in terms of a real, rather than complex, wavefunction (not pairs of real functions)?
I gave an affirmative answer in post 5 in this thread. Let me explain in a slightly more explicit form here. As Schrödinger noted (Nature, v.169, p.538(1952)), if we have a solution of the Klein-Gordon equation in electromagnetic field, the solution is generally complex, but it can always be made real by a gauge transform (at least locally). The four-potential of electromagnetic field changes in the process as well, but electromagnetic field does not. Schrödinger intended to extend his results to the Dirac equation, but it seems there was no sequel to his 1952 work. However, such extension is indeed possible (J. Math. Phys., v. 52, p. 082303 (2011),
http://akhmeteli.org/wp-content/uploads/2011/08/JMAPAQ528082303_1.pdf ). It turns out that, in a general case, three out of four complex components of any Dirac spinor solution of the Dirac equation in arbitrary electromagnetic field can be algebraically eliminated, yielding a fourth-order partial differential equation (PDE) for just one complex component. This equation is generally equivalent to the Dirac equation. As there is just one complex component left, Schrödinger’s trick can be used to make this component real by a gauge transform. Again, the four-potential of electromagnetic field changes in the process as well, but electromagnetic field does not. So the Dirac equation is generally equivalent to an equation for one real wave function.
3) Yet another possible implicit question in TBN's question: can quantum theory be reformulated in terms of the squared absolute value of wave function?
At least sometimes (meaning: for some equations of quantum theory), it is possible. For example, as the Klein-Gordon equation in arbitrary electromagnetic field can be rewritten as an equation for a real, rather than complex, wave function, obviously, it can be rewritten in terms of the square of the wave function (see, e.g., equations 29, 30 in
http://arxiv.org/abs/1111.4630). However, the resulting equations are not linear. Probably, the same can be done with the non-relativistic Schrödinger equation, but I did not try that. As for the Dirac equation, it can be rewritten in terms of just one real component, so it can be rewritten in terms of the square of this component. However, the resulting equation will not be linear. It is not clear if the Dirac equation can be rewritten in terms of the sum of squares of absolute values of four components of the wave function.
4) Yet another possible implicit question in TBN's question: can quantum theory be reformulated in terms of probability?
Probably, yes, - for the non-relativistic Schrödinger equation. It can be rewritten in terms of the squared real wave function, which square equals probability. But the equation for probability will not be linear. As for the Klein-Gordon equation and the Dirac equation, the answer is not clear: we should remember that, for example, for the Klein-Gordon equation in electromagnetic field, probability does not equal \psi*\psi.
5) Finally, the explicit TBN's question: how can probability waves interfere destructively?
Based on the above, it looks like they can interfere for the non-relativistic Schrödinger equation. However, the relevant wave equation for probability is not linear, so there is no linear superposition (however, it is my understanding that interference is possible in some sense for nonlinear equations). Furthermore, there is another complication. When we consider \psi_3, which is a linear superposition of two other solutions of the Schrödinger equation, \psi_1 and \psi_2, then the relevant real wave functions \phi_1, \phi_2, and \phi_3 may correspond to different four-potentials of electromagnetic fields (but to the same electromagnetic field).
As for your arguments based on the path integral approach… I guess they can be circumvented in this case due to either nonlinearity or ambiguity of four-potentials of electromagnetic fields, or both, but I have not considered this issue in any detail.