To simplify the case of the rocket, imagine that the rocket is held in place (or that the rocket is the frame of reference). The only work done is to the spent fuel, which has a fixed terminal velocity (at a specific burn rate). Kinetic energy of the spent fuel increases linearly with time (velocity of spent fuel is constant, with only the amount of mass of fuel changing linearly with time). If the rocket is not held in place, and a non-accelerating frame of reference is chosen, then the increase in the sum of kinetic energy of spent fuel, and rocket (and it's remaining fuel) will also increase linearly with time, since the source of the work being done, burning of fuel, remains the same. I haven't checked, but the equations shown previously should show this to be true.
In the case of a car, the point of application of force is the pavement and driven tires of the car. This is a simpler case, power = force times speed, for example horsepower = force (lbs) times speed (mph) divided by 375 (conversion factor). Assuming no slippage of the tires, and that the power of the engine is constant, and that a continously variable transmission is used to keep the engine running at maximum power, then force will decrease linearly as speed increases, and kinetic energy will increase at a constant rate. The exhaust from the car is not a significant source of acceleration, and I'm ignoring it in this case.
Note that in both the case of the rocket and the car, kinetic energy of the systems were increasing at a constant rate. The rocket case isn't so special if you take into account the kinetic energy of the spent fuel.