yungman
- 5,741
- 294
For wave equation:
\frac{\partial^2 u}{\partial t^2} \;=\; c^2\frac{\partial^2 u}{\partial x^2} \;\;,\;\; u(x,0)\; =\; f(x) \;\;,\;\; \frac{\partial u}{\partial t}(x,0) \;=\; g(x)
D'Alembert Mothod:
u(x,t)\; = \;\frac{1}{2} f(x\;-\;ct)\; +\; \frac{1}{2} f(x\;+\;ct)\; +\; \frac{1}{2c} \int_{x-ct}^{x+ct} \; g(s) ds \;\;
Why the book call f(x\;-\;ct)\; ,\; f(x\;+\;ct) odd extention of f(x)?
\frac{\partial^2 u}{\partial t^2} \;=\; c^2\frac{\partial^2 u}{\partial x^2} \;\;,\;\; u(x,0)\; =\; f(x) \;\;,\;\; \frac{\partial u}{\partial t}(x,0) \;=\; g(x)
D'Alembert Mothod:
u(x,t)\; = \;\frac{1}{2} f(x\;-\;ct)\; +\; \frac{1}{2} f(x\;+\;ct)\; +\; \frac{1}{2c} \int_{x-ct}^{x+ct} \; g(s) ds \;\;
Why the book call f(x\;-\;ct)\; ,\; f(x\;+\;ct) odd extention of f(x)?