jartsa said:
I agree that I would see the black hole stopping its acceleration at the same time as I saw the release of the mass.
Actually, you might not. You might
see the mass released first, and then
see the hole stopping.
But that doesn't mean the hole stopped after the mass was released. It only means that the light you see from the hole took longer to get to you than the light you see from the mass. In order to reconstruct what actually happened from what you see, you have to first correct for the travel time of the light, as I've already said.
What that correction should tell you, heuristically speaking, is that the hole stopped accelerating as soon as the information that the mass had been released reached it. In other words, it should tell you that changes in the gravitational field propagate at the speed of light.
jartsa said:
I am saying that a black hole is where it seems to be, and it has the velocity and the acceleration that it seems to have.
And that's not correct. What is correct is that, when you see the black hole, and the image you see seems to be in a certain position and to have a certain velocity and acceleration, those are the parameters that described the black hole one light-travel time ago; they are not the parameters that describe the black hole "now".
jartsa said:
If it's not where it seems to be, then where is it?
You don't know for sure. The best you can do is to take the latest observation you have, which tells you where the hole was and what it was doing one light-travel time ago, and extrapolate those forward to tell you where the hole is "now".
This is, of course, not restricted to black holes; it's true of anything. We don't see the Sun as it is "now"; we see it as it was 500 seconds ago, and the best we can do at saying where it is "now", based on just that observation, is to extrapolate forward 500 seconds from what see. Of course, in the case of the Sun we don't just have one observation; we have a whole set of astronomical observations stretching over millennia, and a detailed model into which they all fit, so we can do much better at saying where the Sun is "now" than we could on the basis of just one observation. But it's still an extrapolation from data that can't tell us anything more recent than one light-travel time ago.
jartsa said:
seen and actual are the same.
No, they're not. See above. Anyway, isn't it obvious? Do you always assume that you have instantaneous information about everything that happens in the universe, and that your information is always 100% accurate?