Mordred said:
The Earth rotates/spins for the same reason conservation of angular momentum. During Earths formation, the accumulated dust imparted inertia. Venus unusual rotation is due to being struck. As far as I understand
Conservation of angular momentum and dust accumulation explains the rotation of Jupiter quite nicely. Jupiter is the 600 pound gorilla in our solar system. Saturn and Neptune? Maybe. Uranus? No. It's rotational axis is nearly orthogonal to it's orbital axis.
The standard hand wave explanation for the 97.86° obliquity of Uranus is that something big must have smacked it near the end of the formation of the solar system. In fact, two such giant impacts are needed. An alternate explanation requires no collisions: G. Boué and J Laskar (2010),
A collisionless scenario for Uranus tilting, ApJ 712 L44. The obliquity of Uranus remains an open issue.
Conservation of angular momentum and dust accumulation does not explain the rotation of the inner planets. For one thing, dust accumulation is an overly simplistic model of how the inner planets formed. For another, planetary rotational angular momentum is not a conserved quantity for any of inner planets.
The gravity gradient (tidal) torque by the Sun on Mercury is huge. Mercury quickly transitioned to an equilibrium state (a stable spin-orbit resonance such as the current 3:2 spin-orbit resonance) shortly after it formed. Whatever rotational angular momentum Mercury had when it first formed is long lost. Mercury's rotational angular momentum has not been conserved.
In the case of Venus, a synchronous 1:1 spin-orbit resonance is unstable thanks to Venus's very thick atmosphere. Venus is in, or very close to, a stable rotational state. The planet is rotating retrograde but the upper atmosphere is rotating prograde. (Prograde with respect to the orbit, that is. Venus's upper atmosphere rotates retrograde with respect to the body.) This counter-rotating body, counter-counter-rotating atmosphere is one of the four four possible end states for Venus's rotation. Venus is in a stable rotational state. In a sense, it is tidally locked to the Sun.
For a wide variation of initial conditions, there are but four possible end states for Venus's rotation, two with the planet rotating prograde and two with it rotating retrograde. (A. C. M. Correia and J. Laskar (2001),
The four final rotation states of Venus, Nature, 411 (6839), 767–770.) There were two pathways by Venus could have arrived in its current rotational state. One involves a gradual slowdown and then reversal of the rotation rate, the other involves a chaotic transition where the rotation axis essentially flips. Which pathway did Venus follow? There's no way to tell. The two retrograde states are indistinguishable. As is the case with Mercury, whatever rotational angular momentum Venus did have when it first formed is long lost. Venus's rotational angular momentum has not been conserved.
What about Mars? "The numerical integration shows that the obliquity of Mars undergoes large chaotic variations. These variations occur as the system evolves in the chaotic zone associated with a secular spin-orbit resonance." (J. Touma and J. Wisdom (1993),
The chaotic obliquity of Mars, Science, 259 (5099), 1294-1297.) Once again, invoking conservation of angular momentum to explain the rotation of Mars just doesn't work because Mar's rotational angular momentum is not a conserved quantity.
Finally, what about our own planet? Our own planet is the one planet where the giant impact hypothesis is the consensus view. (The giant impact hypothesis is not needed for Venus; the consensus view is that Venus's rotation is best explained by collisionless models. The giant impact model may not be needed for Uranus; see the start of my post.) Note very well: The Earth's rotational angular momentum is not a conserved quantity in the giant impact hypothesis. If this model is correct, more than 75% of the Earth's post-collision angular momentum has been transferred to the orbit of the Moon.Bottom line: Except for Jupiter, and maybe Saturn and Neptune, planetary rotational angular momentum is not a conserved quantity. There are multiple mechanisms by which rotational angular momentum of a planet can be transferred to other bodies.