A Wigner Weisskopf method for time varying Perturbation

  • A
  • Thread starter Thread starter masteralien
  • Start date Start date
masteralien
Messages
36
Reaction score
2
TL;DR Summary
Is it possible to use the Wigner Weisskopf method for transitions from a discrete state to a continuum in the case of a time varying perturbation.
In Time Dependent Perturbation Theory for coupling of a discrete state to a continuum you use the Wigner Weisskopf method to describe how the initial state gets depopulated and final states populated and the line shape for the case of a constant step potential perturbation. However many cases of coupling to a continuum like photoionization aren’t described by a constant perturbation rather a harmonic one. Can this method be extended to a time varying perturbation for example harmonic or exponential. If so are there any sources books, lecture notes, and papers which discuss Wigner Weisskopf method for time varying perturbations for example the line width and wavefunction evolution for a continuum transition in the case of a time varying perturbation say a sinusoidal one for photoionization. Presumably you would just insert into the integral when applying the Wigner Weisskopf approximation the temporal part of the Hamiltonian the same way you do for a constant perturbation, if so are there any sources which discuss this to make sure this is the correct approach. Also does this method even work for time varying Perturbations.
 
Physics news on Phys.org
No, it's for the harmonically time-dependent perturbation. The photon fields are time-dependent!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top