Work check and advice on a statistical mechanics problem

AI Thread Summary
The discussion focuses on calculating probabilities for different statistical distributions of particles in wells, specifically for bosons, fermions, and distinct species. For bosons, the probabilities are derived using the partition function Z, while fermions adhere to the Pauli exclusion principle, resulting in specific probabilities of occupancy. The user expresses uncertainty regarding the correctness of their method for distinct atoms and seeks clarification on calculating probabilities for systems with more than two wells. Concerns are raised about the probabilities not summing to one and the need for clearer state definitions. The conversation emphasizes the importance of accurately applying statistical mechanics principles to ensure valid results.
Clara Chung
Messages
300
Reaction score
13
Homework Statement
I don't know if I am correct or not....
Relevant Equations
Probabilities
241555

b)
Consider P_j(n) as a macrostate of the system,
Bosons: P_1(1) = P_2(1) = 1/2*1/2=1/4 ,P_1(2)=P_2(2)=1/2*1/2=1/4

Fermions: P_1(1)=P_2(1)=1 (Pauli exclusion principle), P_1(2)=P_2(2)=0

Different species: P_1(1)=P_2(1) = 2*1/2*1/2=1/2 (because there are two microstates with corresponding to one atom in each well, atom A in well 1, atom B in well 2 and atom B in well A, atom A in well B).

c)
Bosons: Suppose well 2 has an energy of E. 3 microstates as above
Z = 1 + e^(-2bE) + e^(-bE),
P_1(1)=P_2(1) = e^(-bE)/Z, P_1(2)=1/Z, P_2(2)=e^(-2bE)/Z

Fermions: P_1(1)=P_2(1)=1 (Pauli exclusion principle), P_1(2)=P_2(2)=0

Distinct species: Z = 1 + e^(-2bE) + 2e^(-bE)
P_1(1)=P_2(1) = 2e^(-bE)/Z, P_1(2)=1/Z, P_2(2)=e^(-2bE)/Z

d)
Bosons:
Z = e^(-bU) + e^(-2b(E+U)) + e^(-bE)
P_1(1)=P_2(1) = e^(-bE)/Z, P_1(2)=e^(-bU)/Z, P_2(2)=e^(-2b(E+U))/Z

Fermions: P_1(1)=P_2(1)=1 (Pauli exclusion principle), P_1(2)=P_2(2)=0

Distinct species: Z = e^(-bU) + e^(-2b(E+U)) + 2e^(-bE)
P_1(1)=P_2(1) = 2e^(-bE)/Z, P_1(2)=e^(-bU)/Z, P_2(2)=e^(-2b(E+U))/Z

For U->infinity, Z->e^(-bE) for bosons, 2e^(-bE) for distinct atoms,
P_1(1)=P_2(1) -> 1 for bosons and distinct atoms and P_2(2)=P_1(2)->0 as U->infinity.

I am not sure that whether this method is correct for distinct atoms and is there any more general methods that work for more than 2 wells? For example, I don't know what to do if the question ask: What is the probability of p_j(n) if there are N atoms and J wells...
 
Physics news on Phys.org
Looking at (b), your answers are not clear, and you have probabilities that do not sum to 1. State clearly what the different possible states are.
 
  • Like
Likes Clara Chung
DrClaude said:
Looking at (b), your answers are not clear, and you have probabilities that do not sum to 1. State clearly what the different possible states are.
b)
Consider P_j(n) as a macrostate of the system,
Bosons:
State 1: Two atoms in well 1
State 2: Two atoms in well 2
State 3: Each well is occupied by 1 atom
Can I use the apriori principle that each microstate is equally possible? In this case all states will have a probability of 1/3.

P_1(1)=P_2(1)=1/3+1/3=2/3
P_1(2)=P_2(2)=1/3

Fermions:
State 1: Each well is occupied by 1 atom, so the probability will be 1.

Distinct atoms:
State 1: Two atoms in well 1 p=1/4
State 2: Two atoms in well 2 p=1/4
State 3: Atom A in well 1 Atom B in well 2 p=1/4
State 4: Atom A in well 2 Atom B in well 1 p=1/4

P_1(1) = P_2(1) =1/4+1/4=1/2
P_1(2)=P_2(2) =1/4

I will try part c and d again...
 
c)
Z = 1 + e^(-2bE) + e^(-bE)
Bosons:
State 1: Two atoms in well 1 probability: 1/Z
State 2: Two atoms in well 2 p=e^(-2bE)/Z
State 3: Each well is occupied by 1 atom P=e^(-bE)/Z

P_1(1)=P_2(1)=e^(-bE)/Z
P_1(2)= 1/Z
P_2(2)= e^(-2bE)/Z

Fermions:
State 1: Each well is occupied by 1 atom, so the probability will be 1.

Distinct atoms:
Z = 1 + e^(-2bE) + 2e^(-bE)
State 1: Two atoms in well 1 p= 1/Z
State 2: Two atoms in well 2 p= e^(-2bE)/Z
State 3: Atom A in well 1 Atom B in well 2 p= e^(-bE)/Z
State 4: Atom A in well 2 Atom B in well 1 p= e^(-bE)/Z

P_1(1) =P_2(1) = 2e^(-bE)/Z
P_1(2) = 1/Z
P_2(2) = e^(-2bE)/ZI think my original part c and d are right.. so I will save the time for writing out part d...
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top