Work Check: Wavefunction Normalisation

In summary: The answer was not intended to be obtained, I was just summarizing the working for someone else to do later. But thank you for checking it.
  • #1
WWCY
479
12

Homework Statement


Find relation between real normalisation constants ##B_1## and ##B_2## for the following wavefunction,
$$
\Psi_k =\sum_{k=1,2} \frac{B_k}{\sqrt{4\sigma ^2 + 2it}} \exp (ip_k (x - \frac{p_k}{2}t) - \frac{(x - p_k t)^2}{4\sigma ^2 + 2it})
$$

The working is rather long so thanks in advance for helping, it is greatly appreciated.

Homework Equations

The Attempt at a Solution



Normalisation requires ##\int_{\infty} dx |\Psi (x,0)|^2 = 1##, and
$$\Psi_k (x, 0) =\sum_{k=1,2} \frac{B_k}{2\sigma} \exp (ip_k (x) - \frac{(x)^2}{4\sigma ^2})$$
Knowing that,
$$|\Psi_k|^2 = |B_1 \psi_1|^2 + |B_2 \psi_2|^2 + (B_2 \psi_2)^* (B_1 \psi_1) + (B_2 \psi_2)(B_1 \psi_1)^*$$
$$|B_k \psi_k|^2 = \frac{B_k ^2}{4\sigma^2}\exp (-\frac{x^2}{2\sigma ^2})$$
$$(B_2 \psi_2)(B_1 \psi_1)^* = [\frac{B_1}{2\sigma} \exp (-ip_1 (x) - \frac{(x)^2}{4\sigma ^2})][\frac{B_2}{2\sigma} \exp (ip_2 (x) - \frac{(x)^2}{4\sigma ^2})]$$
$$= \frac{B_1 B_2 }{4\sigma^2} \exp [-i(p_1 - p_2)x - \frac{x^2}{2\sigma^2}]$$
Also,
$$(B_2 \psi_2)^* (B_1 \psi_1) = \frac{B_1 B_2 }{4\sigma^2} \exp [i(p_1 - p_2)x - \frac{x^2}{2\sigma^2}]$$
Before computing the integral, I simplified by letting ##\frac{B_1 B_2}{4\sigma ^2} = \phi##, ##\frac{1}{2\sigma ^2 } = g## and ##p_1 - p_2 = U##
This gave,
$$(B_2 \psi_2)(B_1 \psi_1)^* = \phi \exp (-gx^2 - iUx)$$
$$(B_2 \psi_2)^*(B_1 \psi_1) = \phi \exp (-gx^2 + iUx)$$
The expression for the integral is,
$$\int_{\infty} dx |\Psi (x,0)|^2 = 1 =\int_{\infty} dx [\frac{B_1 ^2 + B_2 ^2}{4\sigma^2}\exp (-gx^2) + \phi \exp (-gx^2 - iUx) + \phi \exp (-gx^2 + iUx)] $$
The integral of the first integrand can be computed with the Gaussian integral result which gives,
$$\frac{B_1 ^2 + B_2 ^2}{4\sigma ^2} \sqrt{\frac{\pi}{g}} = \frac{B_1 ^2 + B_2 ^2}{4\sigma ^2}\sqrt{2\pi \sigma ^2} = \frac{\sqrt{2\pi} (B_1 ^2 + B_2 ^2)}{4\sigma}$$
The integral of the second integrand, which is also equal to that of the third, was done by completing the square,
$$\int_{\infty} dx \phi \exp (-gx^2 - iUx) = \phi e^{\frac{-U^2}{4g}} \int_{\infty} dx \exp (-[\sqrt{g}x + \frac{iU}{2\sqrt{g}}]^2)$$
I used ##dy = \sqrt{g} dx## and rewrote this as,
$$\frac{\phi e^{\frac{-U^2}{4g}}}{\sqrt{g}} \int_{\infty} dx \exp (-y^2) = \frac{\phi e^{\frac{-U^2}{4g}}}{\sqrt{g}} \sqrt{\pi} $$
Substituting for ##g, U, \phi## then gives,
$$\frac{\sqrt{2\pi} B_1 B_2}{4\sigma} \exp (-\frac{(p_1 - p_2)^2 \sigma ^2}{2})$$

Finally, summing up all 3 integrals of all 3 terms gives,

$$1 =\frac{\sqrt{2\pi} (B_1 ^2 + B_2 ^2)}{4\sigma} + \frac{\sqrt{2\pi} B_1 B_2}{2\sigma} \exp (-\frac{(p_1 - p_2)^2 \sigma ^2}{2})
$$
 
Physics news on Phys.org
  • #2
Shouldn't this be moved to the Advanced Physics Homework forum?
 
  • #3
lekh2003 said:
Shouldn't this be moved to the Advanced Physics Homework forum?

I thought that this was pretty basic stuff (in the context of everything else), and decided to post it here. Apologies if I should have posted this in the other thread.
 
  • #4
WWCY said:
I thought that this was pretty basic stuff (in the context of everything else), and decided to post it here. Apologies if I should have posted this in the other thread.
Its not about you not posting in the correct forum. I think you might just get some better and faster answers in the advanced physics forum if what you're studying is wave functions and normalization.
 
  • #5
Could anybody take the time to assist? Many thanks!
 
  • #6
WWCY said:

Homework Statement


Find relation between real normalisation constants ##B_1## and ##B_2## for the following wavefunction,
$$
\Psi_k =\sum_{k=1,2} \frac{B_k}{\sqrt{4\sigma ^2 + 2it}} \exp (ip_k (x - \frac{p_k}{2}t) - \frac{(x - p_k t)^2}{4\sigma ^2 + 2it})
$$

The working is rather long so thanks in advance for helping, it is greatly appreciated.

Homework Equations

The Attempt at a Solution



Normalisation requires ##\int_{\infty} dx |\Psi (x,0)|^2 = 1##, and
$$\Psi_k (x, 0) =\sum_{k=1,2} \frac{B_k}{2\sigma} \exp (ip_k (x) - \frac{(x)^2}{4\sigma ^2})$$

***********************************************************************************

$$1 =\frac{\sqrt{2\pi} (B_1 ^2 + B_2 ^2)}{4\sigma} + \frac{\sqrt{2\pi} B_1 B_2}{2\sigma} \exp (-\frac{(p_1 - p_2)^2 \sigma ^2}{2})
$$
Letting ##B_1## and ##B_2## be possibly complex, I used Maple and obtained
$$\int_R |\Psi(x,0)|^2 \, dx = \frac{\sqrt{2 \pi}}{4 \sigma} ( |B_1|^2 + |B_2|^2)
+ \frac{\sqrt{2 \pi}}{4 \sigma} \exp \left( -\frac{1}{2} \sigma^2 (p_1 - p_2)^2 \right) ( B_1 \bar{B_2} + B_2 \bar{B_1})$$
This agrees with your answer if we assume the ##B_i## are real.
 
  • Like
Likes WWCY
  • #7
Ray Vickson said:
Letting ##B_1## and ##B_2## be possibly complex, I used Maple and obtained
$$\int_R |\Psi(x,0)|^2 \, dx = \frac{\sqrt{2 \pi}}{4 \sigma} ( |B_1|^2 + |B_2|^2)
+ \frac{\sqrt{2 \pi}}{4 \sigma} \exp \left( -\frac{1}{2} \sigma^2 (p_1 - p_2)^2 \right) ( B_1 \bar{B_2} + B_2 \bar{B_1})$$
This agrees with your answer if we assume the ##B_i## are real.
Thank you!
 

1. What is wavefunction normalisation?

Wavefunction normalisation is a mathematical process used in quantum mechanics to ensure that the total probability of finding a particle in all possible locations is equal to 1. It essentially makes the wavefunction a valid probability density function.

2. Why is wavefunction normalisation important?

Wavefunction normalisation is important because it ensures that the total probability of finding a particle in all possible locations is equal to 1. This is a fundamental principle in quantum mechanics and without normalisation, the wavefunction would not accurately describe the behavior of particles.

3. How is wavefunction normalisation calculated?

Wavefunction normalisation is calculated by finding the integral of the square of the wavefunction over all possible locations. This integral is then divided by the total probability of finding the particle, which is also calculated by finding the integral of the square of the wavefunction over all possible locations.

4. What happens if the wavefunction is not normalised?

If the wavefunction is not normalised, it means that the total probability of finding the particle is not equal to 1. This can lead to incorrect predictions and interpretations of the behavior of particles in quantum mechanics.

5. Can wavefunction normalisation be applied to all wavefunctions?

Yes, wavefunction normalisation can be applied to all wavefunctions. However, there are some special cases, such as wavefunctions describing entangled particles, where the normalisation process may be more complex.

Similar threads

Replies
1
Views
1K
Replies
10
Views
342
Replies
16
Views
555
  • Advanced Physics Homework Help
Replies
2
Views
914
  • Advanced Physics Homework Help
Replies
10
Views
2K
  • Advanced Physics Homework Help
Replies
15
Views
2K
  • Advanced Physics Homework Help
Replies
5
Views
1K
Replies
2
Views
531
Replies
1
Views
707
  • Advanced Physics Homework Help
Replies
3
Views
998
Back
Top