(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find relation between real normalisation constants ##B_1## and ##B_2## for the following wavefunction,

$$

\Psi_k =\sum_{k=1,2} \frac{B_k}{\sqrt{4\sigma ^2 + 2it}} \exp (ip_k (x - \frac{p_k}{2}t) - \frac{(x - p_k t)^2}{4\sigma ^2 + 2it})

$$

The working is rather long so thanks in advance for helping, it is greatly appreciated.

2. Relevant equations

3. The attempt at a solution

Normalisation requires ##\int_{\infty} dx |\Psi (x,0)|^2 = 1##, and

$$\Psi_k (x, 0) =\sum_{k=1,2} \frac{B_k}{2\sigma} \exp (ip_k (x) - \frac{(x)^2}{4\sigma ^2})$$

Knowing that,

$$|\Psi_k|^2 = |B_1 \psi_1|^2 + |B_2 \psi_2|^2 + (B_2 \psi_2)^* (B_1 \psi_1) + (B_2 \psi_2)(B_1 \psi_1)^*$$

$$|B_k \psi_k|^2 = \frac{B_k ^2}{4\sigma^2}\exp (-\frac{x^2}{2\sigma ^2})$$

$$(B_2 \psi_2)(B_1 \psi_1)^* = [\frac{B_1}{2\sigma} \exp (-ip_1 (x) - \frac{(x)^2}{4\sigma ^2})][\frac{B_2}{2\sigma} \exp (ip_2 (x) - \frac{(x)^2}{4\sigma ^2})]$$

$$= \frac{B_1 B_2 }{4\sigma^2} \exp [-i(p_1 - p_2)x - \frac{x^2}{2\sigma^2}]$$

Also,

$$(B_2 \psi_2)^* (B_1 \psi_1) = \frac{B_1 B_2 }{4\sigma^2} \exp [i(p_1 - p_2)x - \frac{x^2}{2\sigma^2}]$$

Before computing the integral, I simplified by letting ##\frac{B_1 B_2}{4\sigma ^2} = \phi##, ##\frac{1}{2\sigma ^2 } = g## and ##p_1 - p_2 = U##

This gave,

$$(B_2 \psi_2)(B_1 \psi_1)^* = \phi \exp (-gx^2 - iUx)$$

$$(B_2 \psi_2)^*(B_1 \psi_1) = \phi \exp (-gx^2 + iUx)$$

The expression for the integral is,

$$\int_{\infty} dx |\Psi (x,0)|^2 = 1 =\int_{\infty} dx [\frac{B_1 ^2 + B_2 ^2}{4\sigma^2}\exp (-gx^2) + \phi \exp (-gx^2 - iUx) + \phi \exp (-gx^2 + iUx)] $$

The integral of the first integrand can be computed with the Gaussian integral result which gives,

$$\frac{B_1 ^2 + B_2 ^2}{4\sigma ^2} \sqrt{\frac{\pi}{g}} = \frac{B_1 ^2 + B_2 ^2}{4\sigma ^2}\sqrt{2\pi \sigma ^2} = \frac{\sqrt{2\pi} (B_1 ^2 + B_2 ^2)}{4\sigma}$$

The integral of the second integrand, which is also equal to that of the third, was done by completing the square,

$$\int_{\infty} dx \phi \exp (-gx^2 - iUx) = \phi e^{\frac{-U^2}{4g}} \int_{\infty} dx \exp (-[\sqrt{g}x + \frac{iU}{2\sqrt{g}}]^2)$$

I used ##dy = \sqrt{g} dx## and rewrote this as,

$$\frac{\phi e^{\frac{-U^2}{4g}}}{\sqrt{g}} \int_{\infty} dx \exp (-y^2) = \frac{\phi e^{\frac{-U^2}{4g}}}{\sqrt{g}} \sqrt{\pi} $$

Substituting for ##g, U, \phi## then gives,

$$\frac{\sqrt{2\pi} B_1 B_2}{4\sigma} \exp (-\frac{(p_1 - p_2)^2 \sigma ^2}{2})$$

Finally, summing up all 3 integrals of all 3 terms gives,

$$1 =\frac{\sqrt{2\pi} (B_1 ^2 + B_2 ^2)}{4\sigma} + \frac{\sqrt{2\pi} B_1 B_2}{2\sigma} \exp (-\frac{(p_1 - p_2)^2 \sigma ^2}{2})

$$

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Work Check: Wavefunction Normalisation

Tags:

Have something to add?

**Physics Forums | Science Articles, Homework Help, Discussion**