Jun 6, 2014 #1 zaybu Messages 53 Reaction score 2 Can anyone point to a proof for the Wronskian formula: W[v,v*] = v'v* - vv*' = 2iIM(v', v*) Thanks
Jun 6, 2014 #2 HallsofIvy Science Advisor Homework Helper Messages 42,895 Reaction score 984 What do you mean by 'IM(v', v*)'?
Jun 7, 2014 #3 ChrisVer Science Advisor Messages 3,372 Reaction score 465 W= s z^{*}- s^{*}z s=a+ib z=c+id W= (a+ib) (c-id) - (a-ib) (c+id) W= ac -i ad +i bc -bd - ac -i ad +ibc+bd W= -i ad +i bc -i ad +ibc W= 2i bc - 2i ad = 2i (bc-ad) sz^{*} = ac + bd + i (bc-ad) so Im(sz^{*})= bc-ad The proof is already seen
W= s z^{*}- s^{*}z s=a+ib z=c+id W= (a+ib) (c-id) - (a-ib) (c+id) W= ac -i ad +i bc -bd - ac -i ad +ibc+bd W= -i ad +i bc -i ad +ibc W= 2i bc - 2i ad = 2i (bc-ad) sz^{*} = ac + bd + i (bc-ad) so Im(sz^{*})= bc-ad The proof is already seen