Since I'm an experimentalist (and I was trained in tunneling spectroscopy measurement), I'll show you evidence on why single electron tunneling is much more prevalent (and thus, easier and significantly more probable) than a
coherent 2-electron tunneling.
This manuscript (it was published in PRB) shows superconductor-insulator-normal metal (SIN) and superconductor-insulator-superconductor (SIS) tunneling spectroscopy. Pay attention to Fig 4 (near the end of the manuscript on Pg. 13).
http://arxiv.org/pdf/cond-mat/9807389.pdf
These are IV curves (current versus applied voltage across the tunnel junction) for SIS tunneling. The current that you see is dominated by
single-electron tunneling. This is where the the Cooper pairs break apart, and single-electrons tunnel through the insulating layer, and then reforming Cooper pairs again on the other side. This is true EXCEPT for the zero-bias region. If you notice, there is a small signal in the current when there's no applied voltage, and no single-electron tunneling. This is the Josephson current, where it is a tunneling of the supercurrent consisting of the coherent Cooper pairs!
But look at the "constraints" here. The current is exceedingly small when compared to the single-electron tunnel current, and it is destroyed once one applies even a small bias to the junction. As someone who had measured and dealt with this current, it is EXTREMELY FINICKY, and can be destroyed very easily! In fact, if the tunnel barrier gets bigger, there is a point where I only observed single-electron tunneling, and not the Josephson current any longer. The Josephson current is extremely sensitive to "phase change", which is why it makes for a very sensitive detector in SQUIDs.
So in this set of measurements, there is a significant and distinct difference in the probability of single-electron tunneling versus 2-electron tunneling,
over the same, indentical tunnel barrier! The single-electron tunneling is clearly more probable. In fact, as long as your barrier remains intact, you can crank up the bias potential as high as you want and get more and more tunnel current, while the 2-electron tunnel current is gone!
There are NUMEROUS complications and additional parameters when we deal with coherent tunneling of "composite" particles that are not described in the simple tunneling picture done in undergraduate QM classes. For example, we haven't even discussed the content of the tunneling matrix element which will be relevant as the complexity arises. I simply did not want this to go over the heads of people who haven't even done undergraduate QM classes, but I wanted to point out that many people who talk about macroscopic objects tunneling through a barrier are ignoring the FACT that composite particle/macroscopic object tunneling is extremely different and extremely complicated with compared to single-particle tunneling. The former has a lot more physics that must be considered, and it is not a simple one-to-one correspondence to the latter. The knowledge of single-particle tunneling does not translates as smoothly as one thinks when dealing with composite/macroscopic particles.
Zz.