MHB Zach's question at Yahoo Answers (Field with 25 elements)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Elements
AI Thread Summary
A field of order 25 can be constructed using the polynomial p(x) = x^2 + 2 over the field Z_5, which is irreducible and leads to the field F = Z_5[x]/<x^2 + 2>. This results in 25 distinct elements represented as ax + b, where a and b are in Z_5. For the field Q(√5), the minimal polynomial is f(x) = x^2 - 5, indicating that a basis is {1, √5}. Therefore, the elements of Q(√5) can be expressed as a + b√5, where a and b are rational numbers.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

a) Construct a field of order 25

b) Describe the elements of Q(sqrt5)

Here is a link to the question:

Abstract Linear Algebra? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Zach,

$(a)$ The field $\mathbb{Z}_5$ has 5 elements and consider $p(x) = x^2 + 2\in\mathbb{Z}_5[x]$. This polynomial has no zeroes in $\mathbb{Z}_5$ and a quadratic polynomial without zeroes is irreducible. Hence, $F=\mathbb{Z}_5[x]\;/<x^2+2>$ is a field. But every class has one and only one representative of the form $ax+b$ with $a,b\in\mathbb{Z}_5 $. This implies $\#(F)=5\cdot 5=25.$

$(b)$ According to the theory of field extensions, the minimal polynomial of $\sqrt{5}$ is $f(x)=x^2-5$, so a basis of $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]$ is $B=\{1,\sqrt{5}\}$. As a consequence, $\mathbb{Q}(\sqrt{5})=\{a+b\sqrt{5}:a,b\in\mathbb{Q}\}$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top